Vol. 49
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-09-09
Filtering Power Divider Based on Lumped Elements
By
Progress In Electromagnetics Research Letters, Vol. 49, 31-38, 2014
Abstract
This paper presents a novel method to design filtering power divider with compact size. Based on lumped elements, a novel topology is proposed and theoretically analyzed. The equivalent power splitting circuits and filtering circuits are characterized by even-odd-mode analysis. Closed-form design equations are obtained, and all the unknown parameters can be derived. Meanwhile, two transmission zeros are produced near the passband edges, resulting in high-selectivity quasi-elliptic responses. For demonstration, a filtering power divider is implemented. The circuit operating at 600 MHz occupies only 15 mm × 14 mm.
Citation
Jin-Xu Xu, Wei-Qiang Pan, Li Gao, and Xiao-Lan Zhao, "Filtering Power Divider Based on Lumped Elements," Progress In Electromagnetics Research Letters, Vol. 49, 31-38, 2014.
doi:10.2528/PIERL14080102
References

1. Mansour, G., M. J. Lancaster, P. S. Hall, P. Gardner, and E. Nugoolcharenlap, "Design of filtering microstrip antenna using filter synthesis approach," Progress In Electromagnetics Research, Vol. 145, 59-67, 2014.
doi:10.2528/PIER14011405

2. Zuo, S.-L., W.-J. Wu, and Z.-Y. Zhang, "A simple filtering-antenna with compact size for WLAN application," Progress In Electromagnetics Research Letters, Vol. 39, 17-26, 2013.
doi:10.2528/PIERL13030305

3. Chen, X., F. Zhao, L. Yan, and W. Zhang, "A compact filtering antenna with flat gain response within the passband," IEEE Antennas Wireless Propag. Lett., Vol. 12, 857-860, 2013.
doi:10.1109/LAWP.2013.2271972

4. Bei, L., S. Zhang, and K. Huang, "A novel dual-band multi-way power divider using coupled lines," Progress In Electromagnetics Research C, Vol. 37, 41-51, 2013.
doi:10.2528/PIERC12120321

5. Kawai, T., H. Mizuno, I. Ohta, and A. Enokihara, "Lumped-element quadrature Wilkinson power divider," Asia Pacific. Microw. Conf., 1012-1015, 2009.

6. Li, J. C., Y. L. Wu, Y. A. Liu, J. Y. Shen, S. L. Li, and C. P. Yu, "A generalized coupled-line dual-band Wilkinson power divider with extended ports," Progress In Electromagnetics Research, Vol. 129, 197-214, 2012.
doi:10.2528/PIER12050908

7. Gao, L. and X. Y. Zhang, "High selectivity dual-band bandpass filter using a quad-mode resonator with source-load coupling," IEEE Microw. Wireless Compon. Lett., Vol. 23, 474-476, 2013.
doi:10.1109/LMWC.2013.2274995

8. Jun, S. and K. Chang, "Compact microstrip bandpass filter using miniaturized hairpin resonator," Progress In Electromagnetics Research Letters, Vol. 37, 65-71, 2013.
doi:10.2528/PIERL12120510

9. Singh, P. K., S. Basu, and Y.-H.Wang, "Coupled line power divider with compact size and bandpass response," Electronics Lett., Vol. 45, 892-894, 2009.
doi:10.1049/el.2009.1488

10. Tang, X. and K. Mouthaan, "Filter integrated Wilkinson power dividers," Microw. Opt. Tech. Lett., Vol. 52, 2830-2833, 2010.
doi:10.1002/mop.25605

11. Shao, J.-Y., S.-C. Huang, and Y.-H. Pang, "Wilkinson power divider incorporating quasi-elliptic filters for improved out-of-band rejection," Electronics Lett., Vol. 47, 1288-1289, 2011.
doi:10.1049/el.2011.2766

12. Cheong, P., K.-I. Lai, and K.-W. Tam, "Compact Wilkinson power divider with simultaneous bandpass response and harmonic suppression," IEEE MTT-S Int. Microwave Symp. Dig., 1588-1591, 2010.

13. Li, Y. C., Q. Xue, and X. Y. Zhang, "Single- and dual-band power divider integrated with bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 61, 69-76, 2013.
doi:10.1109/TMTT.2012.2226600

14. Lu, Y. L. and G. L. Dai, "Novel filtering power divider using multiple internal resistors," Progress In Electromagnetics Research Letters, Vol. 45, 75-80, 2014.
doi:10.2528/PIERL14022703

15. Chen, C.-F., T.-Y. Huang, T. M. Shen, and R.-B. Wu, "Design of miniaturized filtering power dividers for system-in-a-package," IEEE Trans. Component Packag. Manufact. Technol., Vol. 3, 1663-1672, 2013.
doi:10.1109/TCPMT.2013.2254488

16. You, C.-W. and Y.-S. Lin, "Miniature on-chip bandpass power divider with equal ripple response and wide stopband," IET Microw. Antenna and Propag., Vol. 6, 1461-1467, 2012.
doi:10.1049/iet-map.2012.0091

17. Deng, P.-H. and L.-C. Dai, "Unequal Wilkinson power dividers with favorable selectivity and high-isolation using coupled-line filter transformers," IEEE Trans. Microw. Theory Tech., Vol. 60, 1520-1529, 2012.
doi:10.1109/TMTT.2012.2189409

18. Wong, S. W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microw. Wireless Compon. Lett., Vol. 18, 518-520, 2008.
doi:10.1109/LMWC.2008.2001009

19. Xiao, L., H. Peng, and T. Yang, "Bandpass-response power divider with high isloation," Progress In Electromagnetics Research Letters, Vol. 46, 43-48, 2014.
doi:10.2528/PIERL14033107

20. Gao, S. S., S. Sun, and S. Xiao, "A novel wideband bandpass power divider with harmonicsuppressed ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 23, 119-121, 2013.
doi:10.1109/LMWC.2013.2244873

21. Choi, M.-G., H.-M. Lee, Y.-H. Cho, X.-G. Wang, and S.-W. Yun, "Design of Wilkinson power divider with embedded low-pass filter and cross-stub for improved stop-band characteristics," IEEE MTT-S Int. Microwave Symp. Dig., 1-4, 2011.

22. Elsbury, M. M., P. D. Dresselhaus, N. F. Bergren, C. J. Burroughs, S. P. Benz, and Z. Popovic, "Broadband lumped-element integrated N-way power dividers for voltage standards," IEEE Trans. Microw. Theory Tech., Vol. 57, 2055-2063, 2009.
doi:10.1109/TMTT.2009.2025464

23. Hou, J.-A. and Y.-H. Wang, "Design of compact 90 and 180 couplers with harmonic suppression using lumped-element bandstop resonators," IEEE Trans. Microw. Theory Tech., Vol. 58, 2932-2939, 2010.
doi:10.1109/TMTT.2010.2078950

24. Pozar, D. M., Microwave Engineering, 3rd Edition, John Wiley & Sons, 2005.