Vol. 41
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-01-26
Building Height Estimation from High Resolution SAR Imagery via Model-Based Geometrical Structure Prediction
By
Progress In Electromagnetics Research M, Vol. 41, 11-24, 2015
Abstract
Height extraction by radar remote sensing is an attractive issue for the building detection and recognition. According to the analysis on the building geometrical properties in the SAR imagery, a novel height estimation algorithm is proposed following a model-based geometrical structure prediction and matching strategy. The range Doppler equation is introduced and simplified for the building 2D geometrical structure prediction in the slant image plane. An evaluation function implementing the ratio of exponentially weighted averages (ROEWA) is also established for the matching between the predicted structure and the observed SAR image. By incorporating the genetic algorithm (GA), the evaluation function is maximized to get the optimal height parameter. The experimental results with the simulated and real airborne and spaceborne SAR images show that the proposed method could efficiently estimate building height from single SAR imagery, and achieve better performance than two popular algorithms with the partial occlusion case.
Citation
Zhuang Wang, Libing Jiang, Lei Lin, and Wenxian Yu, "Building Height Estimation from High Resolution SAR Imagery via Model-Based Geometrical Structure Prediction," Progress In Electromagnetics Research M, Vol. 41, 11-24, 2015.
doi:10.2528/PIERM14073001
References

1. Soergel, U., Radar Remote Sensing of Urban Areas, 1st Edition, Springer, Berlin, 2010.
doi:10.1007/978-90-481-3751-0

2. Ok, A. O., C. Senaras, and B. Yuksel, "Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 3, 1701-1717, 2013.
doi:10.1109/TGRS.2012.2207123

3. Izadi, M. and P. Saeedi, "Three-dimensional polygonal building model estimation from single satellite images," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 6, 2254-2272, 2012.
doi:10.1109/TGRS.2011.2172995

4. Stankov, K. and D. He, "Building detection in very high spatial resolution multispectral images using the hit-or-miss transform," IEEE Geosci. Remote Sens. Lett., Vol. 10, No. 1, 86-90, 2013.
doi:10.1109/LGRS.2012.2193552

5. Elbakary, M. I. and K. M. Iftekharuddin, "Shadow detection of manmade buildings in high-resolution panchromatic satellite images," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 9, 5374-5386, 2014.
doi:10.1109/TGRS.2013.2288500

6. Balz, T., D. Perissinb, U. Soergel, L. Zhang, and M. S. Liao, "Post-seismic infrastructure damage assessment using high-resolution SAR satellite data," Proceeding of 2nd International Conference on Earth Observation for Global Change, 180-191, Chengdu, China, 2009.

7. Blacknell, D., R. D. Hill, and C. P. Moate, "Estimating building dimensions from synthetic aperture radar image sequences," IET Radar, Sonar and Navigation, Vol. 2, No. 3, 189-199, 2008.
doi:10.1049/iet-rsn:20070077

8. Tupin, F., "Extraction of 3D information using overlay detection on SAR images," The 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, 72-76, Berlin, Germany, 2003.

9. Meric, S., F. Fayard, and E. Pottier, "A multi-window approach for radargrammetric improvements," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 10, 3803-3810, 2011.
doi:10.1109/TGRS.2011.2144606

10. Simonetto, E., H. Oriot, and R. Garello, "Rectangular building extraction from stereoscopic airborne radar images," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 10, 2386-2395, 2005.
doi:10.1109/TGRS.2005.853570

11. Guida, R., A. Iodice, and D. Riccio, "Height retrieval of isolated buildings from single high-resolution SAR images," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 7, 2967-2979, 2010.
doi:10.1109/TGRS.2010.2041460

12. Brunner, D., G. Lemoine, L. Bruzzone, and H. Greidanus, "Building height retrieval from VHR SAR imagery based on an iterative simulation and matching technique," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1487-1504, 2010.
doi:10.1109/TGRS.2009.2031910

13. Wang, T. L. and Y. Q. Jin, "Postearthquake building damage assessment using multi-mutual information from pre-event optical image and post-event SAR image," IEEE Geosci. Remote Sens. Lett., Vol. 9, No. 3, 452-456, 2012.
doi:10.1109/LGRS.2011.2170657

14. Zhao, L. J., Building Extraction from High Resolution SAR Imagery, National University of Defense Technology, Changsha, China , 2009.

15. Sportouche, H., F. Tupin, and L. Denise, "Extraction and three-dimensional reconstruction of isolated buildings in urban scenes from high-resolution optical and SAR spaceborne images," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 9, 3932-3946, 2011.
doi:10.1109/TGRS.2011.2132727

16. Matzner, S. A., Model-based Information Extraction from Synthetic Aperture Radar Signals, Portland State University, Portland, USA, 2011.

17. Franceschetti, G., R. Guida, A. Iodice, D. Riccio, G. Ruello, and U. Stilla, "Building feature extraction via a deterministic approach: Application to real high resolution SAR images," Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2681-2684, Barcelona, Spain, 2007.

18. Gao, G., X. X. Qin, and S. L. Zhou, "Modeling SAR images based on a generalized gamma distribution for texture component," Progress In Electromagnetics Research, Vol. 137, 669-685, 2013.
doi:10.2528/PIER13011807

19. Ferro, A., D. Brunner, L. Bruzzone, and G. Lemoine, "On the relationship between double bounce and the orientation of buildings in VHR SAR images," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 4, 612-616, 2011.
doi:10.1109/LGRS.2010.2097580

20. Fjortoft, R., A. Lopes, P. Marthon, and E. Cubero-Castan, "An optimal multiedge detector for SAR image segmentation," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 3, 793-802, 1998.
doi:10.1109/36.673672