Vol. 40
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-04
An Efficient Magnetic Field Integral Equation Based Iterative Solver
By
Progress In Electromagnetics Research M, Vol. 40, 27-35, 2014
Abstract
An iterative solution scheme based on the magnetic field integral equation (MFIE) to compute electromagnetic scattering for arbitrary, perfect electrically conducting (PEC) objects is topic of this contribution. The method uses simple and efficient approaches for the computation of surface current interactions which are typically found in the well-known iterative physical optics (IPO) technique. However, the proposed method is not asymptotic, since no physical optics (PO) concepts are utilized. Furthermore, a least squares correction method is introduced, which is applied not on the complete current vector, but on individual groups of currents. This helps to quickly reduce the residual error and to improve convergence. The result is a simple method which is capable to improve the simulation results obtained by pure asymptotic methods such as PO or shooting and bouncing rays (SBR). The method can be regarded as a simplified iterative method of moments (MoM) technique. Numerical examples show that the proposed approach is advantageous e.g. in problem cases where the neglect of diffraction effects or currents in shadow regions would cause large errors. It also provides an improved prediction of the peak scattering contributions.
Citation
Robert Brem, and Thomas F. Eibert, "An Efficient Magnetic Field Integral Equation Based Iterative Solver," Progress In Electromagnetics Research M, Vol. 40, 27-35, 2014.
doi:10.2528/PIERM14072506
References

1. Jakobus, U. and F. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378

2. Jakobus, U. and F. Landstorfer, "Improvement of the PO-MoM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propagat., Vol. 43, No. 10, 1123-1129, 1995.
doi:10.1109/8.467649

3. Jakobus, U. and F. Landstorfer, "Application of Fock currents for curved convex surfaces within the framework of a current-based hybrid method," Third International Conference on Computation in Electromagnetics, 415-420, Bath, UK, Apr. 1996.
doi:10.1049/cp:19960223

4. Hodges, R. and Y. Rahmat-Samii, "An iterative current-based hybrid method for complex structure," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 265-276, 1997.
doi:10.1109/8.560345

5. Tasic, M. and B. Kolundzija, "Efficient analysis of large scatterers by physical optics driven method of moments," IEEE Trans. Antennas Propagat., Vol. 59, No. 8, 2905-2915, 2011.
doi:10.1109/TAP.2011.2158785

6. Thiele, G. and T. Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 62-69, 1975.
doi:10.1109/TAP.1975.1141004

7. Tzoulis, A. and T. Eibert, "A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3358-3366, 2005.
doi:10.1109/TAP.2005.856348

8. Kaye, M., P. Murthy, and G. Thiele, "An iterative method for solving scattering problems," IEEE Trans. Antennas Propagat., Vol. 33, No. 11, 1272-1279, 1985.
doi:10.1109/TAP.1985.1143510

9. Murthy, P., K. Hill, and G. Thiele, "A hybrid-iterative method for scattering problems," IEEE Trans. Antennas Propagat., Vol. 34, No. 10, 1173-1180, 1986.
doi:10.1109/TAP.1986.1143738

10. Obelleiro, F., J. Rodriguez, and R. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 43, No. 4, 356-361, 1995.
doi:10.1109/8.376032

11. Burkholder, R., "A fast and rapidly convergent iterative physical optics algorithm for computing the RCS of open-ended cavities," Appl. Computational Electromagn. Soc. J., Vol. 16, No. 1, 53-60, 2001.

12. Lu, C. and W. Chew, "Fast far-field approximation for calculating the RCS of large objects," Microwave Opt. Tech. Letters, Vol. 8, No. 5, 238-241, 1995.
doi:10.1002/mop.4650080506

13. Gibson, W., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, Boca Raton, 2008.

14. Kang, G., J. Song, W. Chew, K. Donepudi, and J. Jin, "A novel grid-robust higher order vector basis function for the method of moments," IEEE Trans. Antennas Propagat., Vol. 49, No. 6, 908-915, 2001.
doi:10.1109/8.931148

15. Burkholder, R. and T. Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 793-799, 2005.
doi:10.1109/TAP.2004.841317

16., https://www.cst.com/Products/CSTMWS.
doi:10.1109/TAP.2004.841317

17. Woo, A., H. Wang, M. Schuh, and M. Sanders, "Benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas Propagat. Mag., Vol. 35, No. 1, 84-89, 1993.
doi:10.1109/74.210840