1. Jakobus, U. and F. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378
2. Jakobus, U. and F. Landstorfer, "Improvement of the PO-MoM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propagat., Vol. 43, No. 10, 1123-1129, 1995.
doi:10.1109/8.467649
3. Jakobus, U. and F. Landstorfer, "Application of Fock currents for curved convex surfaces within the framework of a current-based hybrid method," Third International Conference on Computation in Electromagnetics, 415-420, Bath, UK, Apr. 1996.
doi:10.1049/cp:19960223
4. Hodges, R. and Y. Rahmat-Samii, "An iterative current-based hybrid method for complex structure," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 265-276, 1997.
doi:10.1109/8.560345
5. Tasic, M. and B. Kolundzija, "Efficient analysis of large scatterers by physical optics driven method of moments," IEEE Trans. Antennas Propagat., Vol. 59, No. 8, 2905-2915, 2011.
doi:10.1109/TAP.2011.2158785
6. Thiele, G. and T. Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 62-69, 1975.
doi:10.1109/TAP.1975.1141004
7. Tzoulis, A. and T. Eibert, "A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3358-3366, 2005.
doi:10.1109/TAP.2005.856348
8. Kaye, M., P. Murthy, and G. Thiele, "An iterative method for solving scattering problems," IEEE Trans. Antennas Propagat., Vol. 33, No. 11, 1272-1279, 1985.
doi:10.1109/TAP.1985.1143510
9. Murthy, P., K. Hill, and G. Thiele, "A hybrid-iterative method for scattering problems," IEEE Trans. Antennas Propagat., Vol. 34, No. 10, 1173-1180, 1986.
doi:10.1109/TAP.1986.1143738
10. Obelleiro, F., J. Rodriguez, and R. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 43, No. 4, 356-361, 1995.
doi:10.1109/8.376032
11. Burkholder, R., "A fast and rapidly convergent iterative physical optics algorithm for computing the RCS of open-ended cavities," Appl. Computational Electromagn. Soc. J., Vol. 16, No. 1, 53-60, 2001.
12. Lu, C. and W. Chew, "Fast far-field approximation for calculating the RCS of large objects," Microwave Opt. Tech. Letters, Vol. 8, No. 5, 238-241, 1995.
doi:10.1002/mop.4650080506
13. Gibson, W., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, Boca Raton, 2008.
14. Kang, G., J. Song, W. Chew, K. Donepudi, and J. Jin, "A novel grid-robust higher order vector basis function for the method of moments," IEEE Trans. Antennas Propagat., Vol. 49, No. 6, 908-915, 2001.
doi:10.1109/8.931148
15. Burkholder, R. and T. Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 793-799, 2005.
doi:10.1109/TAP.2004.841317
16., https://www.cst.com/Products/CSTMWS.
doi:10.1109/TAP.2004.841317
17. Woo, A., H. Wang, M. Schuh, and M. Sanders, "Benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas Propagat. Mag., Vol. 35, No. 1, 84-89, 1993.
doi:10.1109/74.210840