Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-10-06
Pattern Synthesis for Large Planar Arrays Using a Modified Alternating Projection Method in an Affine Coordinate System
By
Progress In Electromagnetics Research M, Vol. 39, 53-63, 2014
Abstract
A pattern synthesis approach based on a modified alternating projection method in an affine coordinate system is proposed in this paper. The approach is suitable for large planar arrays with periodic parallelogram element layout. According to the affine transformation theory, the radiation pattern of the array with a periodic parallelogram element layout could be written down immediately from that of a conventional one with rectangle cells when a pattern invariant group is defined. Just as known, the conventional alternating projection method is sensitive to the starting point and easy to fall into local optimum; in this paper we introduce a modified alternating projection method with a variable projection operator. To verify the rationality of the proposed method, several examples have been performed on our personal computer. Results show that the method could quickly synthesize the array patterns to the required with high accuracy. In addition, if the array has a triangle or parallelogram element layout, the required antennas to fill up the aperture is reduced when compared with the conventional one with antennas arranged along a rectangle grid. In our examples, the maximum reduction is about 18.09%, which is quite beneficial to reduce the weight and cost of the array.
Citation
Dan Hua, Wen-Tao Li, and Xiao-Wei Shi, "Pattern Synthesis for Large Planar Arrays Using a Modified Alternating Projection Method in an Affine Coordinate System," Progress In Electromagnetics Research M, Vol. 39, 53-63, 2014.
doi:10.2528/PIERM14072104
References

1. Sharp, E. D., "A triangular arrangement of planar-array elements that reduces the number needed," IRE Transactions on Antennas and Propagation, Vol. 9, No. 2, 126-129, 1961.
doi:10.1109/TAP.1961.1144967

2. Lo, Y. T. and S. W. Lee, "A±ffie transformation and its application to antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 6, 890-896, 1965.
doi:10.1109/TAP.1965.1138541

3. Han, J. H., S. H. Lim, and N. H. Myung, "Array antenna TRM failure compensation using adaptively weighted beam pattern mask based on genetic algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 18-21, 2012.
doi:10.1109/LAWP.2011.2181475

4. Cen, L., Z. L. Yu, W. Ser, et al. "Linear aperiodic array synthesis using an improved genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 895-902, 2012.
doi:10.1109/TAP.2011.2173111

5. Ismail, T. H. and Z. M. Hamici, "Array pattern synthesis using digital phase control by quantized particle swarm optimization," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2142-2145, 2010.
doi:10.1109/TAP.2010.2046853

6. Wang, W. B., Q. Y. Feng, and D. Liu, "Synthesis of thinned linear and planar antenna arrays using binary PSO algorithm," Progress In Electromagnetics Research, Vol. 127, 371-387, 2012.
doi:10.2528/PIER12020301

7. Bai, Y. Y., S. Q. Xiao, C. R. Liu, et al. "A hybrid IWO/PSO algorithm for pattern synthesis of conformal phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2328-2332, 2013.
doi:10.1109/TAP.2012.2231936

8. Yang, J., W. T. Li, X. W. Shi, et al. "A hybrid ABC-DE algorithm and its application for time-modulated arrays pattern synthesis," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5485-5495, 2013.
doi:10.1109/TAP.2013.2279093

9. Keizer, W. P. M. N., "Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast Fourier transforms of the array factor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 715-722, 2007.
doi:10.1109/TAP.2007.891511

10. Keizer, W. P. M. N., "Element failure correction for a large monopulse phased array antenna with active amplitude weighting," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2211-2218, 2007.
doi:10.1109/TAP.2007.902008

11. Keizer, W. P. M. N., "Large planar array thinning using iterative FFT techniques," IEEE Transactions on Antennas and Propagation, Vol. 57, 3359-3362, 2009.
doi:10.1109/TAP.2009.2029382

12. Wang, X. K., Y. C. Jiao, and Y. Y. Tan, "Synthesis of large thinned planar arrays using a modified iterative Fourier technique," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1564-1571, 2014.
doi:10.1109/TAP.2014.2302836

13. Bucci, O. M., G. Franceschetti, G. Mazzarella, et al. "Intersection approach to array pattern synthesis," IEE Proceedings H, on Microwaves, Antennas and Propagation, Vol. 137, No. 6, 349-357, 1990.
doi:10.1049/ip-h-2.1990.0064

14. Bucci, O. M., G. D. Elia, G. Mazzarella, et al. "Antenna pattern synthesis: A new general approach," Proceedings of the IEEE, Vol. 82, No. 3, 358-371, 1994.
doi:10.1109/5.272140

15. Trincia, D., L. Mareaccioli, R. V. Gatti, et al. "Modified projection method for array pattern synthesis," IEEE 34th European Microwave Conference, 1397-1400, Amsterdam, Netherlands, Oct. 2004.

16. Quijano, J. L. A. and G. Vecchi, "Alternating adaptive projections in antenna synthesis," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 727-737, 2010.
doi:10.1109/TAP.2009.2039307

17. Han, D. D., W. Wu, and B. Du, "Perturbation alternating projections method for pattern synthesis of phased array antenna," IEEE Global Symposium on Millimeter Waves (GSMM), 385-388, Harbin, China, May 2012.

18. Franceschetti, G., G. Mazzarella, and G. Panariello, "Array synthesis with excitation constraints," IEEE Antennas and Propagation Society International Symposium, 1192-1195, Jun. 1988.