Vol. 48
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-21
A Compact Microstrip Patch Antenna with Reconfigurable Feed Network for Polarization Diversity
By
Progress In Electromagnetics Research Letters, Vol. 48, 67-73, 2014
Abstract
A compact reconfigurable four-feeding microstrip antenna with polarization diversity is presented in this paper. With four triangle-shaped elements as the radiation patch, the proposed antenna can achieve good impedance match for linear polarization (LP), left hand circular polarization (LHCP) and right hand circular polarization (RHCP). A four-way power divider made by three Wilkinson power dividers and interconnected with PIN diodes is designed to feed the four elements. By controlling the states of the diodes, the antenna can produce LP, LHCP and RHCP. By using T-shaped slots on the patch and back to back geometry, a compact size of 0.6λ0× 0.6λ0×0.02λ0 is achieved. The impedance bandwidth of LP is about 80 MHz (3.3%), while the usable bandwidths (overlap of impedance bandwidth and AR bandwidth) of LHCP and RHCP are about 370 MHz (15%) and 250 MHz (10%). The average gain for LP is -2.1 dBi, and that for CP is -3.3 dBi. This reconfigurable patch antenna with switchable polarization has good performance and simple structure, which can be used for 2.4 GHz wireless communication systems.
Citation
Chun-Xia Cheng, Fu-Shun Zhang, and Ya-Li Yao, "A Compact Microstrip Patch Antenna with Reconfigurable Feed Network for Polarization Diversity," Progress In Electromagnetics Research Letters, Vol. 48, 67-73, 2014.
doi:10.2528/PIERL14071401
References

1. Fang, S.-T., "A novel polarization diversity antenna forWLAN applications," Proc. IEEE Antennas Propag. Soc. Int. Symp., 282-285, 2000.

2. Yang, X.-X. and S.-S. Zhong, "Analysis of two dual-polarization square-patch antennas," Microw. Opt. Technol. Lett., Vol. 26, No. 3, 153-156, 2000.
doi:10.1002/1098-2760(20000805)26:3<153::AID-MOP5>3.0.CO;2-I

3. Qin, P. Y., Y. J. Guo, and C. H. Liang, "Effect of antenna polarization diversity on MIMO system capacity," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1092-1095, 2010.
doi:10.1109/LAWP.2010.2093116

4. Nishamol, M. S., V. P. Sarin, D. Tony, C. K. Aanandan, P. Mohannan, and K. Vasudevan, "An electronically reconfigurable microstrip antenna with switchable slots for polarization diversity," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3424-3427, 2011.
doi:10.1109/TAP.2011.2161446

5. Cao, S.-X., X.-X. Yang, B. Gong, and B.-C. Shao, "A reconfigurable microstrip antenna with agile polarization using diode switches," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1566-1569, 2011.

6. Yang, X.-X., B.-C. Shao, F. Yang, A. Z. Elsherbeni, and B. Gong, "A polarization reconfigurable patch antenna with loop slots on the ground plane," IEEE Antennas Wireless Propag. Lett., Vol. 11, 69-72, 2012.
doi:10.1109/LAWP.2011.2182595

7. Yang, Z.-X., H.-C. Yang, J.-S. Hong, and Y. Li, "Bandwidth enhancement of a polarizationreconfigurable patch antenna with stair-slots on the ground," IEEE Antennas Wireless Propag. Lett., Vol. 13, 579-582, 2014.
doi:10.1109/LAWP.2014.2312971

8. Chen, Y., F. Zhang, M. Wang, J. Li, and Y. Chen, "A spiral slot antenna with reconfigurable CPW-to-slotline transition for polarization diversity," Progress In Electromagnetics Research C, Vol. 45, 73-85, 2013.
doi:10.2528/PIERC13081901

9. Tsai, J.-F. and J.-S. Row, "Reconfigurable square-ring microstrip antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2857-2860, 2013.
doi:10.1109/TAP.2013.2244554

10. Cao, W., B. Zhang, A. Liu, T. Yu, D. Guo, and K. Pan, "A reconfigurable microstrip antenna with radiation pattern selectivity and polarization diversity," IEEE Antennas Wireless Propag. Lett., Vol. 11, 453-456, 2012.

11. BAR89-02LRH, www.Infineon.com, .