Vol. 49
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-09-08
Two-Dimensional Discretized Coherent Noise Jamming Method to Wideband LFM Radar
By
Progress In Electromagnetics Research Letters, Vol. 49, 15-22, 2014
Abstract
For coherent jammers to wideband linear frequency modulation (LFM) radar, the ratio between jamming energy and signal energy is always constant. To enhance the jamming to signal ratio (JSR), a two-dimensional (2D) discretized coherent noise jamming (2D-DCNJ) method is first proposed in this paper, where the covering area of the noise jamming results in 2D imaging is limited to a certain shape and further discretized to centralize the jamming energy. Moreover, the idea of weighting is applied to 2D-DCNJ to control the distribution of jamming energy, which can present some particular deceptive characteristics. The relationship between jamming results and modulated noise is analyzed, based on which the procedure of generating the jamming signal is detailed, and the JSR performance is compared with the previous ones. Finally, the validity of the proposed method is demonstrated via numerical simulation.
Citation
Shixian Gong, Xizhang Wei, Xiang Li, and Yongshun Ling, "Two-Dimensional Discretized Coherent Noise Jamming Method to Wideband LFM Radar," Progress In Electromagnetics Research Letters, Vol. 49, 15-22, 2014.
doi:10.2528/PIERL14070301
References

1. Chen, V. C. and H. Ling, Time-Frequency Transforms for Radar Imaging and Signal Analysis, Artech House, Norwood, MA, 2002.

2. Park, J. I. and K. T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

3. Liu, Q., S. Xing, X. Wang, J. Dong, D. Dai, and Y. Li, "The interferometry phase of InSAR coherent jamming with arbitrary waveform modulation," Progress In Electromagnetics Research, Vol. 124, 101-118, 2012.
doi:10.2528/PIER11111601

4. Liu, Q., J. Dong, X. Wang, S. Xing, and B. Pang, "An efficient SAR jammer with direct radio frequency processing (DRFP)," Progress In Electromagnetics Research, Vol. 137, 293-309, 2013.
doi:10.2528/PIER12092404

5. Li, N. J. and Y. T. Zhang, "A survey of radar ECM and ECCM," IEEE Trans. AES, Vol. 31, No. 3, 1110-1120, 1995.

6. Dumper, K., P. S Cooper, A. F Wonsl, et al. "Spaceborne synthetic aperture radar and noise jamming," Proceedings of the 1997 Radar Edinburgh International Conf., 411-414, Edinburgh, UK, 1997.

7. Dong, C. X., S. Q. Yang, G. Q. Zhao, et al. "Effect of noise FM jamming against ISAR imaging," CIE Int. Conf. Radar, 1016-1018, Shanghai, China, 2006.

8. Wang, W. Q. and J. Y. Cai, "A technique for jamming bi- and multistatic SAR systems," IEEE GRSL, Vol. 4, No. 1, 80-82, 2007.

9. Lee, Y. J., J. R. Park, W. H. Shin, et al. "A study on jamming performance evaluation of noise and deception jammer against SAR satellite," Proc. 2011 Int. APSAR Conf., 1-3, 2011.

10. Wei, Y., R. Hang, S. X. Zhang, et al. "Study of noise jamming based on convolution modulation to SAR," Int. Conf. CMCE, 169-172, Changchun, China, 2010.

11. Lv, B., "Simulation study of noise convolution jamming countering to SAR," ICCDA, Vol. V4130, No. V4133, Qinhuangdao, Hebei, China, 2010.

12. Feng, X. Z. and X. J. Xu, "A 2-D correlated noise depressive jamming technique to synthetic aperture radar," IET Int. Radar Conf., 1-4, Guilin, China, 2009.

13. Bassem, R. M. and Z. E. Atef, Matlab Simulations for Radar Systems Design, Chapman Hall/CRC CRC Press LLC, 2004.

14. Ozdemir, C., Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms, John Wiley, Hoboken, New Jersey, 2012.
doi:10.1002/9781118178072.ch1

15. Camp, W. W., J. T. Mayhan, and R. M. O Donnell, "Wideband radar for ballistic missile defense and range-doppler imaging of satellites," Lincoln laboratory Journal, Vol. 12, No. 2, 267-280, 2000.

16. Bao, Z., M. D. Xing, and T. Wang, Radar Imaging Technology, Publishing House of Electronics Industry, Beijing, China, 2004.