1. Ota, T., Y. Ashizawa, K. Nakagawa, S. Ohnuki, H. Iwamatsu, A. Tsukamoto, and A. Itoh, "Dependence of circularly polarized light excited by plasmon aperture on relative position to magnetic particles for all-optical magnetic recording," Journal of the Magnetics Society of Japan, Vol. 36, No. 1-2, 66-69, Feb. 2012.
doi:10.3379/msjmag.1108M001
2. Sugawara, M., N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gbs-1 directly modulated lasers and 40 Gbs-1 signal-regenerative amplifiers," Journal of Physics D: Applied Physics, Vol. 38, No. 13, 2126-2134, Jun. 2005.
doi:10.1088/0022-3727/38/13/008
3. Aoki, K., D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photoniccrystal nanocavity," Nature Photonics, Vol. 2, No. 13, 688-692, Oct. 2008.
4. Pierantoni, L., D. Mencarelli, and T. Rozzi, "A new 3-D transmission line matrix scheme for the combined Schrödinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 3, 654-662, Mar. 2008.
doi:10.1109/TMTT.2008.916883
5. Ohnuki, S., T. Takeuchi, T. Sako, Y. Ashizawa, K. Nakagawa, and M. Tanaka, "Coupled analysis of Maxwell-Schrödinger equations by using the length gauge: Harmonic model of a nanoplate subjected to a 2D electromagnetic field," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 26, 533-544, Feb. 2013.
doi:10.1002/jnm.1896
6. Takeuchi, T., S. Ohnuki, and T. Sako, "Comparison between Maxwell-Schrödinger and Maxwell- Newton hybrid simulations for multi-well electrostatic potential," IEEE Journal of Quantum Electronics, Vol. 50, No. 5, 334-339, May 2014.
doi:10.1109/JQE.2014.2310196
7. Lorin, E., S. Chelkowski, and A. D. Bandrauk, "A numerical Maxwell-Schrödinger model for intense laser-matter interaction and propagation," Computer Physics Communications, Vol. 177, No. 12, 908-932, Jul. 2007.
doi:10.1016/j.cpc.2007.07.005
8. Lorin, E., S. Chelkowski, and A. D. Bandrauk, "Attosecond pulse generation from aligned molecules-dynamics and propagation in H+2," New Journal of Physics, Vol. 10, No. 2, Feb. 2008.
doi:10.1088/1367-2630/10/2/025033
9. Yamaguchi, T. and T. Hinata, "Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method," Optics Express, Vol. 15, No. 18, 11481-11491, Sep. 2007.
doi:10.1364/OE.15.011481
10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd edition, Artech House, Boston, London, 2005.
11. Cohen-Tannoudji, C., J. Dupont-Roc, and C. Crynberg, Atom-photon Interactions: Basic Processes and Applications, Wiley-VCH, Weinheim, 2004.
12. Soriano, A., E. A. Navarro, J. A. Porti, and V. Such, "Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices," Journal of Applied Physics, Vol. 95, No. 12, 8011-8018, Jun. 2004.
doi:10.1063/1.1753661