Vol. 148
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-07-21
Hybrid Simulation of Maxwell-Schrodinger Equations for Multi-Physics Problems Characterized by Anharmonic Electrostatic Potential (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 148, 73-82, 2014
Abstract
A novel hybrid simulation based on the coupled Maxwell-Schrödinger equations has been utilized to investigate, accurately, the dynamics of electron confined in a one-dimensional potential and subjected to time-dependent electromagnetic fields. A detailed comparison has been made for the computational results between the Maxwell-Schrödinger and conventional Maxwell-Newton approaches, for two distinct cases, namely, characterized by harmonic and anharmonic electrostatic confining potentials. The results obtained by the two approaches agree very well for the harmonic potential while disagree quantitatively for the anharmonic potential. This clearly indicates that the Maxwell-Schrödinger scheme is indispensable to multi-physics simulation particularly when the anharmonicity effect plays an essential role.
Citation
Takashi Takeuchi, Shinichiro Ohnuki, and Tokuei Sako, "Hybrid Simulation of Maxwell-Schrodinger Equations for Multi-Physics Problems Characterized by Anharmonic Electrostatic Potential (Invited Paper)," Progress In Electromagnetics Research, Vol. 148, 73-82, 2014.
doi:10.2528/PIER14063001
References

1. Ota, T., Y. Ashizawa, K. Nakagawa, S. Ohnuki, H. Iwamatsu, A. Tsukamoto, and A. Itoh, "Dependence of circularly polarized light excited by plasmon aperture on relative position to magnetic particles for all-optical magnetic recording," Journal of the Magnetics Society of Japan, Vol. 36, No. 1-2, 66-69, Feb. 2012.
doi:10.3379/msjmag.1108M001

2. Sugawara, M., N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gbs-1 directly modulated lasers and 40 Gbs-1 signal-regenerative amplifiers," Journal of Physics D: Applied Physics, Vol. 38, No. 13, 2126-2134, Jun. 2005.
doi:10.1088/0022-3727/38/13/008

3. Aoki, K., D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photoniccrystal nanocavity," Nature Photonics, Vol. 2, No. 13, 688-692, Oct. 2008.

4. Pierantoni, L., D. Mencarelli, and T. Rozzi, "A new 3-D transmission line matrix scheme for the combined Schrödinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 3, 654-662, Mar. 2008.
doi:10.1109/TMTT.2008.916883

5. Ohnuki, S., T. Takeuchi, T. Sako, Y. Ashizawa, K. Nakagawa, and M. Tanaka, "Coupled analysis of Maxwell-Schrödinger equations by using the length gauge: Harmonic model of a nanoplate subjected to a 2D electromagnetic field," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 26, 533-544, Feb. 2013.
doi:10.1002/jnm.1896

6. Takeuchi, T., S. Ohnuki, and T. Sako, "Comparison between Maxwell-Schrödinger and Maxwell- Newton hybrid simulations for multi-well electrostatic potential," IEEE Journal of Quantum Electronics, Vol. 50, No. 5, 334-339, May 2014.
doi:10.1109/JQE.2014.2310196

7. Lorin, E., S. Chelkowski, and A. D. Bandrauk, "A numerical Maxwell-Schrödinger model for intense laser-matter interaction and propagation," Computer Physics Communications, Vol. 177, No. 12, 908-932, Jul. 2007.
doi:10.1016/j.cpc.2007.07.005

8. Lorin, E., S. Chelkowski, and A. D. Bandrauk, "Attosecond pulse generation from aligned molecules-dynamics and propagation in H+2," New Journal of Physics, Vol. 10, No. 2, Feb. 2008.
doi:10.1088/1367-2630/10/2/025033

9. Yamaguchi, T. and T. Hinata, "Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method," Optics Express, Vol. 15, No. 18, 11481-11491, Sep. 2007.
doi:10.1364/OE.15.011481

10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd edition, Artech House, Boston, London, 2005.

11. Cohen-Tannoudji, C., J. Dupont-Roc, and C. Crynberg, Atom-photon Interactions: Basic Processes and Applications, Wiley-VCH, Weinheim, 2004.

12. Soriano, A., E. A. Navarro, J. A. Porti, and V. Such, "Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices," Journal of Applied Physics, Vol. 95, No. 12, 8011-8018, Jun. 2004.
doi:10.1063/1.1753661