Vol. 49
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-10-17
A Varactor-Tuned Bandpass Filter Using Open Split-Ring Resonators
By
Progress In Electromagnetics Research Letters, Vol. 49, 99-104, 2014
Abstract
This paper presents a compact tunable bandpass filter that is based on open split ring resonator to achieve high out-of-band rejection. Exact equations and design procedures are given based on strict theoretical analysis. By loading the varactor diodes, the center frequency and bandwidth of the bandpass filter could realize reconfigurable. Then defected ground structure was adopted in the input and output ports for the sake of high out-of-band rejection. In order to verify the result of theoretical analysis, a compact tunable bandpass filter with defected ground structure, whose range of frequency was 1.61 GHz~1.82 GHz and range of relative bandwidth was 8.3%~24.8%, had been simulated and fabricated. Good agreement between the measured data and the anticipated results is achieved.
Citation
Cheng Liu, Xin Huai Wang, Yangbing Xu, and Xiao-Wei Shi, "A Varactor-Tuned Bandpass Filter Using Open Split-Ring Resonators," Progress In Electromagnetics Research Letters, Vol. 49, 99-104, 2014.
doi:10.2528/PIERL14062707
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

2. Al-Naib, I. A. I., C. Jansen, and M. Koch, "Single metal layer CPW metamaterial band pass filter," Progress In Electromagnetics Research Letters, Vol. 17, 153-161, 2010.
doi:10.2528/PIERL10081103

3. Ibraheem, I. A. and M. Koch, "Coplanar waveguide metamaterials: The role of bandwidth modifying slots," Applied Physics Letters, Vol. 91, 113517-113517-3, 2007.
doi:10.1063/1.2784965

4. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, et al. "Equivalentcircuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

5. Martel, J., R. Marques, J. D. Baena, F. Martın, and M. Sorolla, "A new LC series element for compact bandpass filter design," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 5, May 2004.
doi:10.1109/LMWC.2004.827836

6. Marques, R., J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Physical Review Letters, Vol. 89, 183901-1, October 28, 2002.

7. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadsidecoupled split ring resonators for metamaterial design — Theory and experiments," IEEE Transactions on Antennas and Propagation, Vol. 51, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

8. De Dios Ruiz, J. and J. Hinojosa, "Double-sided open split ring resonator for compact microstrip band-pass filter design," IET Microwaves, Antennas & Propagation, Vol. 6, 846-853, 2012.
doi:10.1049/iet-map.2011.0465

9. Shaozhen, Z., D. G. Holtby, K. L. Ford, A. Tennant, and R. J. Langley, "Compact low frequency varactor loaded tunable SRR antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, 2301-2304, 2013.

10. Bouyge, D., D. Mardivirin, J. Bonache, A. Crunteanu, A. Pothier, M. Duran-Sindreu, et al. "Split ring resonators (SRRs) based on micro-electro-mechanical deflectable cantilever-type rings: Application to tunable stopband filters," IEEE Microwave and Wireless Components Letters, Vol. 21, 243-245, 2011.
doi:10.1109/LMWC.2011.2124450

11. Vasic, B., M. M. Jakovljevic, G. Isic, and R. Gajic, "Tunable metamaterials based on split ring resonators and doped graphene," Applied Physics Letters, Vol. 103, 011102-011102-4, 2013.

12. Dal, A., P. Jun-Seok, K. Chul-Soo, K. Juno, Q. Yongxi, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, 86-93, 2001.

13. Jong-Sik, L., K. Chul-Soo, A. Dal, Y.-C. Jeong, and N. Sangwook, "Design of low-pass filters using defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 2539-2545, 2005.
doi:10.1109/TMTT.2005.852765

14. Jun-Seok, P., Y. Jun-Sik, and A. Dal, "A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 2037-2043, 2002.
doi:10.1109/TMTT.2002.802313

15. Safwat, A. M. E., F. Podevin, P. Ferrari, and A. Vilcot, "Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 3559-3564, 2006.
doi:10.1109/TMTT.2006.880654

16. Wolff, I., "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electronics Letters, Vol. 8, 302-303, 1972.
doi:10.1049/el:19720223

17. Hong, J.-S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for crosscoupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 2099-2109, 1996.
doi:10.1109/22.543968

18. Zhu, Y., R.W. Mao, and C. S. Tsai, "A varactor and FMR-tuned wideband band-pass filter module with versatile frequency tunability," IEEE Transactions on Magnetics, Vol. 47, 284-288, 2011.
doi:10.1109/TMAG.2010.2070836