Vol. 38
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-13
Investigation of Ultra-Wide Reflection Bands in UV Region by Using One-Dimensional Multi Quantum Well Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 38, 37-44, 2014
Abstract
Enhancement of the reflection bands in ultraviolet region by using one-dimensional multi quantum well (MQW) photonic crystal (PC) structure has been investigated theoretically. The proposed structure is composed of three MgF2/SrTiO3 MQWs. The range of reflection band is investigated from the reflectance spectra of the one-dimensional MQW photonic crystal structure obtained by Transfer Matrix Method (TMM). From the numerical analysis it is observed that a range of reflection band for a single MQW PC is very narrow though it increases as the thickness of layers increases. But when three MQWs of MgF2/SrTiO3 are used we get much enlarged reflection band covering the range 119.8 nm-311.3 nm (reflectivity > 99%) with bandwidth 191.5 nm, for normal incidence. Further, we see that when the angle of incidence is increased, the width of reflection band increases in case of TE wave with a decrease for TM wave, because this omnidirectional reflection (ODR) band is very much narrow in UV region. We have computed ODR band upto incidence angle 50˚ for single as well as combined MQW PC. Analyzing the reflectance curve for incidence angle up to 50˚ for both TE and TM polarizations we find that by applying the combine MQW PC, omnidirectional reflection band increases significantly in comparison to single MQW structure. The proposed MQW photonic crystal structure is very useful in designing ultraviolet shielding for drugs, ultraviolet reflector for protecting damage of DNA and in skin diseases especially for skin cancer.
Citation
Sanjeev Srivastava, "Investigation of Ultra-Wide Reflection Bands in UV Region by Using One-Dimensional Multi Quantum Well Photonic Crystal," Progress In Electromagnetics Research M, Vol. 38, 37-44, 2014.
doi:10.2528/PIERM14062308
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Shawn, L. Y., J. G. Fleming, L. Robin, M. M. Sigalas, R. Biswas, and K. M. Ho, "Complete threedimensional photonic band gap in single cubic structure," J. Opt. Soc. Am. B, Vol. 18, 32-35, 2001.
doi:10.1364/JOSAB.18.000032

4. Mishra, A., S. K. Awasthi, S. K. Srivastava, U. Malviya, and S. P. Ojha, "Tunable and omnidirectional filters based on one-dimensional photonic crystal composed of single negative materials," J. Opt. Soc. Am B, Vol. 8, 1416-1422, 2011.
doi:10.1364/JOSAB.28.001416

5. Weiss, S. M., M. Haurylau, and P. M. Fauchet, "Tunable photonic bandgap structures for optical interconnects," Opt. Mater., Vol. 27, 740-745, 2005.
doi:10.1016/j.optmat.2004.08.007

6. Srivastava, S. K. and S. P. Ojha, "Broadband optical reflector based on Si/SiO2 one-dimensional graded photonic crystal structure," J. Mod. Opt., Vol. 56, 33-40, 2009.
doi:10.1080/09500340802428330

7. Yuan, K., X. Zheng, C.-L. Li, and W. L. She, "Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystal containing a defect layer with a negative refractive index," Phys. Rev., Vol. E71, 066604-1-066604-5, 2005.

8. Srivastava, S. K., M. Upadhyay, S. K. Awasthi, and S. P. Ojha, "Tunable reflection bands and defect modes in one-dimensional tilted photonic crystal structure," Opt. Phot. J., Vol. 3A, 230-236, 2012.
doi:10.4236/opj.2012.223035

9. Wu, C.-J. and Z. H. Wang, "Properties of defect modes in one-dimensional photonic crystal," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706

10. Liu, H. Y., et al. "Transmission of terahertz wave through one-dimensional photonic crystal containing single and multiple metallic defects," J. Appl. Phys., Vol. 110, 073101-1-073101-8, 2011.

11. Zhang, H. F., S. B. Liu, and X. K. Kong, "Defect mode properties of two-dimensional unmagnetized plasma photonic crystal with line defect under transverse magnetic mode," Acta Phys. Sin., Vol. 60, 025215, 2011.

12. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.
doi:10.2528/PIER07050202

13. Lee, H. Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," J. Appl. Phys., Vol. 93, 819-830, 2003.
doi:10.1063/1.1530726

14. Srivastava, S. K., S. K. Awasthi, and S. P. Ojha, "A near infra-red optical reflector using onedimensional photonic crystal structure containing chalcogenide glasses," Opt. Electron. Lett., Vol. 6, 406-411, 2010.

15. Ansari, N. and M. M. Tehranchi, "Design of an omnidirectional band gap independent of ambient media refractive indices by using heterostructure magnetic photonic crystal," Appl. Phys. B, Vol. 99, 191-195, 2010.
doi:10.1007/s00340-009-3848-6

16. Fekete, L., F. Kadlec, P. Kuzel, and H. Nemec, "Ultrafast opto-terahertz photonic crystal modulator," Optics Lett., Vol. 32, 680-682, 2007.
doi:10.1364/OL.32.000680

17. Srivastava, S. K. and S. P. Ojha, "Enhancement of omnidirectional reflection bands in onedimensional photonic crystal structure with left-handed materials," Progress in Electromagnetics Research, Vol. 68, 191-111, 2007.
doi:10.2528/PIER06061602

18. Guan, H., et al. "Omnidirectional mirror for visible light based on one-dimensional photonic crystal," Chin. Opt. Lett., Vol. 9, 071603-1-071603-4, 2011.

19. Aly, A. H., W. Sabra, and H. A. Elsayed, "Dielectric and superconducting photonic crystal," J. Supercond. Nov. Magn., Vol. 26, 553-560, 2013.
doi:10.1007/s10948-012-1791-y

20. Wu, C. J. and H. C. Lin, "Investigation of photonic band gap in semiconductor-organic photonic crystal in ultraviolet region," Opt. Rev., Vol. 18, 338-342, 2011.
doi:10.1007/s10043-011-0065-4

21. Banaei, H. A. and F. A. Mehdizadeh, "Proposal for anti-UVB filter based on one-dimensional photonic crystal structure," Digest J. Nanomat. and Biostrct., Vol. 1, 367-371, 2012.

22. Aly, A. H., H. A. Elsayed, W. Sabra, and A. Mehaney, "Ternary metallic-dielectric photonic crystals within ultraviolet wavelengths," J. Mod. Phys. Appl., Vol. 2, 1-20, 2013.
doi:10.11648/j.ajmp.20130201.11

23. Yeh, P., Optical Waves in Layered Media, 118-125, John Wiley & Sons, New York, 1988.

24. Born, M. and E. Wolf, Principles of Optics, 4th Edition, 58–68, Pergamon, Oxford, 1970.