Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-30
Investigation of Path Loss Prediction in Different Multi-Floor Stairwells at 900 MHz and 1800 MHz
By
Progress In Electromagnetics Research M, Vol. 39, 27-39, 2014
Abstract
Wireless communication along the stairwell in a high rise building is important to ensure immediate response to take place via consistent relaying of necessary information or data in emergency situations. Thus, a good understanding of signal wave attenuation along the stairwell is necessary to allow a better wireless network planning. This paper presents empirical path loss prediction model for multi-floor stairwell environment. The proposed model is based on measurement in 4 different stairwells, at 900 MHz and 1800 MHz which are near public safety communication bands. The model incorporates the effect of different floor heights and unique path loss-to-distance relation on several stair flights observed during measurement campaign. The proposed model demonstrates higher accuracy than 3 standard path loss models at 2 other stairwells.
Citation
Omar Abdul Aziz, and Tharek Bin Abdul Rahman, "Investigation of Path Loss Prediction in Different Multi-Floor Stairwells at 900 MHz and 1800 MHz ," Progress In Electromagnetics Research M, Vol. 39, 27-39, 2014.
doi:10.2528/PIERM14061904
References

1. Lim, S. Y., Z. Yun, J. M. Baker, N. Celik, H. Youn, and M. F. Iskander, "Propagation modeling and measurement for a multifloor stairwell," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 583-586, 2009.
doi:10.1109/LAWP.2009.2017039

2. Ashraf, I., H. Claussen, and L. T. W. Ho, "Distributed radio coverage optimization in enterprise femtocell networks," Proc. IEEE ICC, 1-6, 2010.

3. Lim, S. Y., Z. Yun, and M. F. Iskander, "Radio propagation modeling in indoor stairwell: A K-means clustering approach," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.

4. Souryal, M., J. Geissbuehler, L. Miller, and N. Moayeri, "Real-time deployment of multihop relays for range extension," Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, 85-98, 2007.

5. Liu, H., Z. Xie, J. Li, S. Lin, D. J. Siu, P. Hui, K.Whitehouse, and J. A. Stankovic, "An Automatic, Robust, and efficient multiuser breadcrumb system for emergency response applications," IEEE Trans. Mobile Comput., Vol. 13, No. 4, 723-736, 2014.
doi:10.1109/TMC.2013.63

6. Yang, C. F. and B. C.Wu, "A ray-tracing/PMM hybrid approach for determining wave propagation through periodic structures," IEEE Trans. Veh. Technol., Vol. 50, No. 3, 791-795, 2001.
doi:10.1109/25.933313

7. Teh, C. H. and H. T. Chuah, "Propagation measurement in a multi-floor stairwell for model validation," 28th Int. Union of Radio Sci. Gen. Assembly, India, Oct. 2005.

8. Valcarce, A. and J. Zhang, "Empirical indoor-to-outdoor propagation model for residential areas at 0.9 to 3.5 GHz," IEEE Antennas Wireless Propag. Lett., Vol. 9, 682-685, 2010.
doi:10.1109/LAWP.2010.2058085

9. Rappaport, T. S., J. N. Murdock, D. G. Michelson, and R. Shapiro, "An open-source archiving system," IEEE Trans. Veh. Technol., Vol. 6, No. 2, 24-32, 2011.
doi:10.1109/MVT.2011.940792

10. Zyoud, A., J. Chebil, M. H. Habaebi, M. R. Islam, and A. M. Zeki, "Comparison of empirical indoor propagation models for 4G wireless networks at 2.6GHz," International Conference on Control, Engineering & Information Technology (CEIT2013), 4-7, Jun. 2013.

11. Emmitt, S. and C. A. Gorse, Barry’s Introduction to Construction of Buildings, 2nd Edition, Wile-Blackwell, 2010.

12. Hartwell, C. and N. Pevsner, The Buildings of England Lancashire, Yale University Press, North, 2009.

13. Building Department, The Government of Hong Kong Special Administrative Unit, "Code of practice for fire safety in buildings,", 2011.

14. Hoffmann, A. and R. Muehlnikel, "Experimental and numerical investigation of fire development in a real fire in a five-storey apartment building," Fire Mater., Vol. 35, 453-462, 2010.

15. Matolak, D. W., Q. Zhang, and Q. Wu, "Path loss in an urban peer-to-peer channel for six publicsafety frequency bands," IEEE Wireless Commun. Lett., Vol. 2, No. 3, 263-266, 2013.
doi:10.1109/WCL.2013.020513.120919

16. Arshad, K., F. Katsriku, and A. Lasebae, "Effects of different parameters on attenuation rates in circular and arch tunnels," PIERS Online, Vol. 3, No. 5, 607-611, 2007.
doi:10.2529/PIERS060628070308

17. Sun, J., L. Cheng, and X. Liu, "Influence of electrical parameters on UHF radio propagation in tunnels," 5th Intl. Symposium on Multi-dimensional Mobile Communications, Vol. 1, 436-438, 2004.

18. Rappaport, T. S., Wireless Communications: Principles and Practice, Wireless Communications: Principles and Practice, 2002.

19. Andrade, C. B. and R. P. F. Hoefel, "IEEE 802.11 WLANS: A comparison on indoor coverage models," Proc. 23rd Canadian. Conf. Electrical and Computer Eng., 1-6, May 2010.

20., Recommendation ITU-R P.1238-7, "Propagation data and prediction methods for the planning of indoor radio communications systems and radio local area networks in the frequency range of 900MHz to 100 GHz," P Series Radiowave Propagation, 2012.