Vol. 37
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-04
Microwave Tunable Metasurfaces Implemented with Ferroelectric Materials and Periodical Copper Wires
By
Progress In Electromagnetics Research M, Vol. 37, 191-202, 2014
Abstract
A tunable metasurface composed of multiple resonant units is proposed, with each unit containing a block of SrTiO3 ferroelectric and a periodical copper-wire structure. The local transmission coefficient of the metasurface is controlled by voltagetuning the permittivity of SrTiO3 in each resonant unit. The function of this tunable metasurface is demonstrated by simulating beam steering at the angles of 30˚ and 14.47˚, respectively; as well as beam focusing at the focal lengths of 2λ0 and 4λ0, respectively.
Citation
Li-Hao Yeh, and Jean-Fu Kiang, "Microwave Tunable Metasurfaces Implemented with Ferroelectric Materials and Periodical Copper Wires," Progress In Electromagnetics Research M, Vol. 37, 191-202, 2014.
doi:10.2528/PIERM14061606
References

1. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, No. 6125, 2013.
doi:10.1126/science.1232009

2. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light," Science, Vol. 33, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

3. Ni, X., A. V. Kildishev, and V. M. Shalaev, "Metasurface holograms for visible light," Nat. Commun., Vol. 4, Article No. 2807, 2013.

4. Farmahini-Farahani, M., J. Cheng, and H. Mosallaei, "Metasurfaces nanoantennas for light processing," J. Opt. Soc. Am. B, Vol. 30, No. 9, 2365-2370, 2013.
doi:10.1364/JOSAB.30.002365

5. Zhao, Y. and A. Alu, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. Lett. B, Vol. 84, 205428, 2011.
doi:10.1103/PhysRevB.84.205428

6. Yu, N., F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano Lett., Vol. 12, 6328-6333, 2012.
doi:10.1021/nl303445u

7. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.
doi:10.1021/nl302516v

8. Lin, J., S. Wu, X. Li, C. Huang, and X. Luo, "Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays," Appl. Phys. Exp., Vol. 6, 022004, 2013.
doi:10.7567/APEX.6.022004

9. Ni, X., S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light Sci. Appl., Vol. 2, e72, 2013.
doi:10.1038/lsa.2013.28

10. Jiang, X.-Y., J.-S. Ye, J.-W. He, X.-K. Wang, D. Hu, S.-F. Feng, Q. Kan, and Y. Zhang, "An ultrathin terahertz lens with axial long focal depth based on metasurfaces," Opt. Exp., Vol. 21, No. 24, 30030-30038, 2013.
doi:10.1364/OE.21.030030

11. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.
doi:10.1103/PhysRevLett.110.203903

12. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.
doi:10.1021/nl304761m

13. Pu, M., P. Chen, C.Wang, Y.Wang, Z. Zhao, C. Hu, C. Huang, and X. Luo, "Broadband anomalous reflection based on gradient low-Q meta-surface," AIP Adv., Vol. 3, 052136, 2013.
doi:10.1063/1.4809548

14. Pors, A. and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Exp., Vol. 21, No. 22, 27438-27451, 2013.
doi:10.1364/OE.21.027438

15. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, 197401, 2013.
doi:10.1103/PhysRevLett.110.197401

16. Pfeiffer, C. and A. Grbic, "Cascaded metasurfaces for complete phase and polarization control," Appl. Phys. Lett., Vol. 102, 231116, 2013.
doi:10.1063/1.4810873

17. Pfeier, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," EEE Trans. Microwave Theory Tech., Vol. 61, No. 12, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173

18. Haus, H. A., Waves and Fields of Optoelectronics, Prentice-Hall, 1984.

19. Yeh, P. and C. Gu, Optics of Liquid Crystal Displays, Wiley, 1999.

20. Jylha, L. and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.
doi:10.2528/PIER07081502

21. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, 1995.
doi:10.1007/978-3-662-09109-8

22. Haeni, J. H., P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, et al. "Room-temperature ferroelectricity in strained SrTiO3," Nature, Vol. 430, 758-761, 2004.
doi:10.1038/nature02773

23. Jang, H. W., A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, et al. "Ferroelectricity in strain-free SrTiO3 thin films," Phys. Rev. Lett., Vol. 104, 197601, 2010.
doi:10.1103/PhysRevLett.104.197601

24. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

25. Wang, G., D. Moses, A. J. Heeger, H.-M. Zhang, M. Narasimhan, and R. E. Demaray, "Poly(3-hexylthiophene) ¯eld-e®ect transistors with high dielectric constant gate insulator," J. Appl. Phys., Vol. 95, No. 1, 316-322, 2004.
doi:10.1063/1.1630693

26. Sheen, J., C.-Y. Li, L.-W. Ji, W.-L. Mao, W. Liu, and C.-A. Chen, "Measurements of dielectric properties of TiO2 thin ¯lms at microwave frequencies using an extended cavity perturbation technique," J. Mater. Sci.: Mater. Electron., Vol. 21, 817-821, 2010.
doi:10.1007/s10854-009-9999-8

27. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801

28. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.

29. Goodman, J. W., Introduction to Fourier Optics, 3rd Edition, Roberts and Company, 2005.