Vol. 148
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-08-19
Human Body as Antenna and Its Effect on Human Body Communications
By
Progress In Electromagnetics Research, Vol. 148, 193-207, 2014
Abstract
Human body communication (HBC) is a promising wireless technology that uses the human body as part of the communication channel. HBC operates in the near-field of the high frequency (HF) band and in the lower frequencies of the very high frequency (VHF) band, where the electromagnetic field has the tendency to be confined inside the human body. Electromagnetic interference poses a serious reliability issue in HBC; consequently, it has been given increasing attention in regard to adapting techniques to curtail its degrading effect. Nevertheless, there is a gap in knowledge on the mechanism of HBC interference that is prompted when the human body is exposed to electromagnetic fields as well as the effect of the human body as an antenna on HBC. This paper narrows the gap by introducing the mechanisms of HBC interference caused by electromagnetic field exposure of human body. We derived analytic expressions for induced total axial current in the body and associated fields in the vicinity of the body when an imperfectly conducting cylindrical antenna model of the human body is illuminated by a vertically polarized plane wave within the 1-200 MHz frequency range. Also, fields in the vicinity of the human body model from an on-body HBC transmitter are calculated. Furthermore, conducted electromagnetic interference on externally embedded HBC receivers is also addressed. The results show that the maximum HBC gain near 50 MHz is due to whole-body resonance, and the maximum at 80 MHz is due to the resonance of the arm. Similarly, the results also suggest that the magnitude of induced axial current in the body due to electromagnetic field exposure of human body is higher near 50 MHz.
Citation
Behailu Kibret, Assefa K. Teshome, and Daniel Lai, "Human Body as Antenna and Its Effect on Human Body Communications," Progress In Electromagnetics Research, Vol. 148, 193-207, 2014.
doi:10.2528/PIER14061207
References

1. Wang, J and Q. Wang, Body Area Communications: Channel Modeling, Communication Systems, and EMC, John Wiley & Sons, Somerset, NJ, USA, 2013.

2. Seyedi, M., B. Kibret, T. H. D. Lai, and M. Faulkner, "A survey on intrabody communications for body area network applications," IEEE Trans. Biomed. Eng., Vol. 60, No. 8, 2067-2079, 2013.
doi:10.1109/TBME.2013.2254714

3. Xu, R., H. Zhu, and J. Yuan, "Electric-field intrabody communication channel modeling with finite-element method," IEEE Trans. Biomed. Eng., Vol. 58, No. 3, 705-712, 2011.
doi:10.1109/TBME.2010.2093933

4. Cho, N., J. Yoo, S. Song, J. Lee, S. Jeon, and H. Yoo, "The human body characteristics as a signal transmission medium for intrabody communication," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 1080-1086, 2007.
doi:10.1109/TMTT.2007.895640

5. Cho, N., J. Lee, L. Yan, J. Bea, S. Kim, and H. Yoo, "A 60 kb/s-to-10 Mb/s 0.37 nJ/b adaptive-frequency-hopping transceiver for body-area network," IEEE J. Solid-State Circuits, Vol. 44, No. 3, 708-717, 2009.
doi:10.1109/JSSC.2008.2012328

6. Wang, Q., T. Sanpei, Q. Wang, and D. Plettemeir, "EMI modeling for cardiac pacemaker in human body communication," Proc. Int. Symp. on EMC, 629-632, 2009.

7. Park, H., I. Lim, , S. Kang, and W. Kim, "Human body communication system with FSBT," Proc. IEEE ISCE, 1-5, 2010.

8. Anguera, P. J., D. Aguilar, J. Verges, M. Ribo, and C. Puente Baliarda, "Handset antenna design for FM reception," Proceedings of the IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

9. Aguilar, D., P. J. Anguera, C. Puente Baliarda, and M. Ribo, "Small handset antenna for FM reception," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2677-2683, 2008.
doi:10.1002/mop.23774

10. Verges, J., P. J. Anguera, C. Puente Baliarda, and D. Aguilar, "Analysis of the human body on the radiation of FM handset antenna," Microwave and Optical Technology Letters, Vol. 51, No. 11, 2588-2590, 2009.
doi:10.1002/mop.24686

11. Pladevall, A., C. Picher, A. Andujar, and P. J. Anguera, "Some thoughts on human body effects on handset antenna at the FM band," Progress In Electromagnetics Research, Vol. 19, 121-132, 2011.
doi:10.2528/PIERM11040408

12. Poljak, D., Human Exposure to Electromagnetic Fields, WIT Press, Ashurst, Southampton, UK, 2004.

13. Foster, K. R. and H. P. Schwan, "Dielectric properties of tissues and biological materials: A critical review," Crit. Rev. Biomed. Eng., Vol. 17, No. 1, 25-104, 1989.

14. Gabriel, S., R. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

15. King, R. W. P. and S. Prasad, Fundamental Electromagnetic Theory and Applications, Prentice-Hall, Englewood Cliffs, USA, 1986.

16. King, R. W. P. and T. T. Wu, "Currents, charges, and near fields of cylindrical antennas," Radio Science Journal of Research NBS/UNSC-URSI, Vol. 69D, No. 3, 429-446, 1965.

17. King, R. W. P. and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas Propag., Vol. 14, No. 5, 524-534, 1966.
doi:10.1109/TAP.1966.1138733

18. Taylor, C. D., W. H. Charles, and A. A. Eugene, "Resistive receiving and scattering antenna," IEEE Trans. Antennas Propag., Vol. 15, No. 3, 371-376, 1967.
doi:10.1109/TAP.1967.1138944

19. King, R. W. P. and T. T. Wu, "Electromagnetic field near a parasitic cylindrical antenna," Proc. Inst. Electr. Eng., Vol. 113, No. 1, 35-40, 1966.
doi:10.1049/piee.1966.0005

20. King, R. W. P. and T. T. Wu, "Currents, charges, and near fields of cylindrical receiving and scattering antennas," IEEE Trans. Antennas Propag., Vol. 13, No. 6, 978-979, 1965.
doi:10.1109/TAP.1965.1138563

21. Wait, J. R. and K. P. Spies, "On the image representation of the quasi-static fields of a line current source above the ground," Can. J. Phy., Vol. 47, No. 23, 2731-2733, 1969.
doi:10.1139/p69-334

22. Wait, J. R., "Image theory of a quasistatic magnetic dipole over a dissipative half-space," Electron. Lett., Vol. 5, No. 13, 281-282, 1969.
doi:10.1049/el:19690214

23. Bannister, P. R., "Summary of image theory expressions for the quasi-static fields of antennas at or above the earth's surface," Proc. IEEE, Vol. 67, No. 7, 1001-1008, 1979.
doi:10.1109/PROC.1979.11381

24. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, New Jersey, USA, 2005.

25. Dimbylow, P. J., "Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz," Phys. Med. Biol., Vol. 47, No. 16, 2835-2846, 2002.
doi:10.1088/0031-9155/47/16/301

26. Hand, J. W., "Modelling the interaction of electromagnetic fields (10 MHz--10 GHz) with the human body: Methods and applications," Phys. Med. Biol., Vol. 53, No. 16, R243-R286, 2008.
doi:10.1088/0031-9155/53/16/R01

27. ICNIRP (International Commission on Non-Ionising Radiation Protection) "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998.