Vol. 38
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-10
Orbital Angular Momentum Density of a Hollow Vortex Gaussian Beam
By
Progress In Electromagnetics Research M, Vol. 38, 15-24, 2014
Abstract
Here the hollow vortex Gaussian beam is described by the exact solution of the Maxwell equations. By means of the method of the vectorial angular spectrum, analytical expressions of the electromagnetic fields of a hollow vortex Gaussian beam propagating in free space are derived. By using the electromagnetic fields of a hollow vortex Gaussian beam beyond the paraxial approximation, one can calculate the orbital angular momentum density distribution of a hollow vortex Gaussian beam in free space. The overall transverse components of the orbital angular momentum of a hollow vortex Gaussian beam are equal to zero. Therefore, the influences of the topological charge, beam order, Gaussian waist size, and linearly polarized angle on the distribution of longitudinal component of the orbital angular momentum density of a hollow vortex Gaussian beam are numerically demonstrated in the reference plane. The outcome is useful to optical trapping, optical guiding, and optical manipulation using the hollow vortex Gaussian beams.
Citation
Yimin Zhou, and Guoquan Zhou, "Orbital Angular Momentum Density of a Hollow Vortex Gaussian Beam," Progress In Electromagnetics Research M, Vol. 38, 15-24, 2014.
doi:10.2528/PIERM14060601
References

1. Yin, J., Y. Zhu, W. Jhe, and Y. Wang, "Atom guiding and cooling in a dark hollow laser beam," Phys. Rev. A, Vol. 58, 509-513, 1998.
doi:10.1103/PhysRevA.58.509

2. Powell, P. N., "Blue-detuned dark-hollow laser guides atomic beam," Laser Focus World, Vol. 37, 58, 2001.

3. Wang, Z., Y. Dong, and Q. Lin, "Atomic trapping and guiding by quasi-dark hollow beams," J. Opt. A: Pure Appl. Opt., Vol. 7, 147-153, 2005.
doi:10.1088/1464-4258/7/3/009

4. Yin, J., Y. Zhu, W. Wang, Y. Wang, and W. Jhe, "Optical potential for atom guidance in a dark hollow laser beam," J. Opt. Soc. Am. B, Vol. 15, 25-33, 1998.
doi:10.1364/JOSAB.15.000025

5. Zhu, K., H. Tang, X. Sun, X. Wang, and T. Liu, "Flattened multi-Gaussian light beams with an axial shadow generated through superposing Gaussian beams," Opt. Commun., Vol. 207, 29-34, 2002.
doi:10.1016/S0030-4018(02)01417-7

6. Cai, Y., X. Lu, and Q. Lin, "Hollow Gaussian beam and its propagation," Opt. Lett., Vol. 28, 1084-1086, 2003.
doi:10.1364/OL.28.001084

7. Mei, Z. and D. Zhao, "Controllable dark-hollow beams and their propagation characteristics," J. Opt. Soc. Am. A, Vol. 22, 1898-1902, 2005.
doi:10.1364/JOSAA.22.001898

8. Liu, Z., H. Zhao, J. Liu, J. Lin, M. A. Ahmad, and S. Liu, "Generation of hollow Gaussian beams by spatial filtering," Opt. Lett., Vol. 32, 2076-2078, 2007.
doi:10.1364/OL.32.002076

9. Zheng, Y., X.Wang, F. Shen, and X. Li, "Generation of dark hollow beam via coherent combination based on adaptive optics," Opt. Express, Vol. 18, 26946-26958, 2010.
doi:10.1364/OE.18.026946

10. Schweiger, G., R. Nett, B. Ozel, and T. Weigel, "Generation of hollow beams by spiral rays in multimode light guides," Opt. Express, Vol. 18, 4510-4517, 2010.
doi:10.1364/OE.18.004510

11. Ma, H., Z. Liu, F. Xi, and X. Xu, "Near-diffraction-limited dark hollow beam generated by using a hybrid control way," Appl. Phys. B, Vol. 105, 883-891, 2011.
doi:10.1007/s00340-011-4674-1

12. Zhou, G., X. Chu, and J. Zheng, "Investigation in hollow Gaussian beam from vectorial structure," Opt. Commun., Vol. 281, 5653-5658, 2008.
doi:10.1016/j.optcom.2008.08.028

13. Chen, Y., Y. Cai, H. T. Eyyuboˇglu, and Y. Baykal, "Scintillation properties of dark hollow beams in a weak turbulent atmosphere," Appl. Phys. B, Vol. 90, 87-92, 2008.
doi:10.1007/s00340-007-2825-1

14. Deng, D. and Q. Guo, "Exact nonparaxial propagation of a hollow Gaussian beam," J. Opt. Soc. Am. B, Vol. 26, 2044-2049, 2009.
doi:10.1364/JOSAB.26.002044

15. Gao, X., Q. Zhan, M. Yun, H. Guo, X. Dong, and S. Zhuang, "Focusing properties of spirally polarized hollow Gaussian beam," Opt. Quant. Electron., Vol. 42, 827-840, 2011.
doi:10.1007/s11082-011-9491-6

16. Sharma, A., M. S. Sodha, S. Misra, and S. K. Mishra, "Thermal defocusing of intense hollow Gaussian laser beams in atmosphere," Laser and Particle Beams, Vol. 31, 403-410, 2013.
doi:10.1017/S0263034613000402

17. MIshra, S. and S. K. Mishra, "Focusing of dark hollow Gaussian electromagnetic beams in a plasma with relativistic — Ponderomotive regime," Progress In Electromagnetics Research B, Vol. 16, 291-309, 2009.
doi:10.2528/PIERB09061705

18. Zhou, G., Y. Cai, and C. Dai, "Hollow vortex Gaussian beams," Sci. China — Phys. Mech. Astron., Vol. 56, 896-903, 2013.
doi:10.1007/s11433-013-5069-6

1. He, H., M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett., Vol. 75, 826-829, 1995.
doi:10.1103/PhysRevLett.75.826

20. Lee, W. M., X.-C. Yuan, and W. C. Cheong, "Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation," Opt. Lett., Vol. 29, 1796-1798, 2004.
doi:10.1364/OL.29.001796

21. Paterson, C., "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett., Vol. 94, 153901, 2005.
doi:10.1103/PhysRevLett.94.153901

22. Yao, A. M. and M. J. Padgett, "Orbital angular momentum: Origins behavior and applications," Adv. Opt. Photon., Vol. 3, 161-204, 2011.
doi:10.1364/AOP.3.000161

23. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.
doi:10.2528/PIER12050309

24. Zhou, X., "On independence, completeness of Maxwell’s equations and uniqueness theorems in electromagnetics," Progress In Electromagnetics Research, Vol. 64, 117-134, 2006.
doi:10.2528/PIER06061302

25. Sha, W., X.-L. Wu, Z.-X. Huang, and M.-S. Chen, "Maxwell’s equations, symplectic matrix, and grid," Progress In Electromagnetics Research B, Vol. 8, 115-127, 2008.
doi:10.2528/PIERB08052303

26. Gradshteyn, I. S. and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980.

27. Deng, D., S. Du, and Q. Guo, "Energy flow and angular momentum density of nonparaxial airy beams," Opt Commun., Vol. 289, 6-9, 2013.
doi:10.1016/j.optcom.2012.09.007

28. Zhou, G. and G. Ru, "Orbital angular momentum density of an elegant Laguerre-Gaussian beam," Progress In Electromagnetics Research, Vol. 141, 751-768, 2013.
doi:10.2528/PIER13051608