Vol. 48
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-11
Dual-Band MIMO Antenna with High Isolation Application by Using Neutralizing Line
By
Progress In Electromagnetics Research Letters, Vol. 48, 15-19, 2014
Abstract
In this letter, a dual-band Multiple Input Multiple Output (MIMO) antenna system with high isolation is presented. This design consists of two dual-band monopole antennas and neutralizing transmission line. For each antenna element, the operating frequency band covers from 2.4 GHz to 2.6 GHz and 5.2 GHz to 6 GHz. To improve the isolation between these two antenna elements spacing only 0.1225 λ0 at 2.45 GHz, a neutralization decoupling transmission line is introduced. The measured return loss results of these two antennas are better than 10-dB in operating frequency band. The measured isolation between the two antennas is better than 15 dB. The envelope correlation coefficient (ECC) is smaller than 0.01 of whole operating frequency band. The peak gain of this design is better than 2 dBi in operating bands. This configuration can be applied for Wireless local area network (WLAN) and Bluetooth (BT) communication system.
Citation
Jie-Huang Huang, Wen-Jiun Chang, and Christina F. Jou, "Dual-Band MIMO Antenna with High Isolation Application by Using Neutralizing Line," Progress In Electromagnetics Research Letters, Vol. 48, 15-19, 2014.
doi:10.2528/PIERL14053003
References

1. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array application," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

2. Salehi, M., A. Motevasselian, A. Tavakoli, and T. Heidari, "Mutual coupling reduction of microstrip antennas using defected ground structure," 10th IEEE Singapore International Conference on Communication systems, ICCS 2006, 1-5, Singapore, Oct. 2005.

3. Li, Z., Z. Du, and K. Gong, "A dual-slot diversity antenna with isolation enhancement using parasitic elements for mobile handsets," Asia-Pacic Microwave Conference, APMC, 1821-1824, Singapore, Dec. 2009.

4. Diallo, A., C. Luxey, P. L. Thuc, R. Staraj, and G. Kossiavas, "Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 2, No. 1, 93-101, 2008.
doi:10.1049/iet-map:20060220

5. Luo, Q., J. R. Pereira, and H. M. Salgado, "Reconfigurable dual-band C-shaped monopole antenna array with high isolation," Electon. Lett., Vol. 46, No. 13, 888-889, 2010.
doi:10.1049/el.2010.8846

6. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electon. Lett., Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495

7. Tsai, C-.C., W.-C. Hsia, and C.-Y. Huang, "S-shaped monopole antenna for dual-band WLAN applications," Asia-Pacic Microwave Conference, APMC, 1-3, Bangkok, Thailand, Dec. 2007.

8. Li, F., L.-S. Ren, G. Zhao, and Y.-C. Jiao, "Compact triple-band monopole antenna with C-shaped and S-shaped meander strips for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 15, 107-116, 2010.
doi:10.2528/PIERL10052004

9. Lu, J.-H. and Y.-S. Cai, "Planar compact multi-band C-shape monopole antenna with inverted Lshape parasitic strip for WiMAX applications," Progress In Electromagnetics Research C, Vol. 20, 17-29, 2011.

10. Yao, J., F.-S. Zhang, X. Q. Jiao, and H. Bai, "Tri-band slotted F-shaped antenna with dual-polarization characteristics for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 40, 181-190, 2013.
doi:10.2528/PIERL13041705