Vol. 38
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-23
Noise Removal Technique in Near-Field Millimeter-Wave Cylindrical Scanning Imaging System
By
Progress In Electromagnetics Research M, Vol. 38, 83-89, 2014
Abstract
The accuracy of scattering measurements in near-field millimeter-wave cylindrical scanning imaging system is often degraded by the contamination from additive noise and clutter. Thus, efficient noise removal technique is necessary to achieve accuracy improvement. This paper proposes an independent component analysis denoising algorithm, which relies on the assumption of statistical independence of the sources, where high order statistical properties are used. In the algorithm, the virtual noise components are incorporated into the independent component analysis model, which expands original one-dimensional observation to virtual multi-dimensional observations. The computationally efficient sources estimation technique is presented, based of joint diagonalization of fourth order cumulant matrix. The high speed millimeter-wave near-field cylinder scanning imaging system is set up to verify the denoising results of range profiles, three-dimensional scatter intensity and two-dimensional projection images. The results indicate both the feasibility and validity of the proposed denoising algorithm to be applied in the near-field millimeter-wave cylindrical scanning imaging system.
Citation
Xin Wen, Feng Nian, Yujie Yang, and Keming Fen, "Noise Removal Technique in Near-Field Millimeter-Wave Cylindrical Scanning Imaging System," Progress In Electromagnetics Research M, Vol. 38, 83-89, 2014.
doi:10.2528/PIERM14052906
References

1. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Trans. on Image Processing, Vol. 5, No. 8, 1252-1265, 1996.
doi:10.1109/83.506760

2. LaHaie, I. J. and E. I. LeBaron, "Processing techniques for removal of target support contamination," AP-S. Digest Antennas and Propagation Society International Symposium, Vol. 1, 488-491, 1993.
doi:10.1109/APS.1993.385301

3. Burns, J. W. and N. S. Subotic, "Reduction of clutter contamination in radar cross section measurements using independent components analysis," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 731-734, 2004.

4. LaHaie, I. J., "An overview of advanced processing techniques for RCS measurements," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 608-611, 2001.

5. Kristensson, G. and M. Gustafsson, "Measuring the extinction cross section," 3rd European Conference on Antennas and Propagation, EuCAP 2009, 3633-3636, 2009.

6. Hilliard, D. and L. To, "Advanced radar cross section clutter removal algorithms," 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 1-5, 2010.

7. Piere, C., "Independent component analysis, a new concept," Signal Processing — Special Issue on Higher Order Statistics, Vol. 36, No. 3, 287-314, 1994.

8. Miller, E. G. and W. John, "ICA using spacings estimates of Entropy," Journal of Machine Learning Research, Vol. 4, No. 7–8, 1271-1295, 2003.

9. Cardoso, J. F. and A. Souloumiac, "Blind beamforming for non-Gaussian signals," IEE Proceedings — Radar and Signal Processing, Vol. 140, No. 6, 362-370, 1993.
doi:10.1049/ip-f-2.1993.0054

10. Murillo-Fuentes, J. J. and F. J. Gonzalez-Serrano, "Independent component analysis with sinusoidal fourth-order contrasts," Acoustics, Speech, and Signal Processing, Vol. 5, 2785-2788, 2001.

11. Hyvarinen, A., "Survey on independent component analysis," Neural Computing Surveys, Vol. 2, 94-128, 1999.

12. Hyvarinen, A. and E. Oja, "Independent component analysis: Algorithms and application," Neural Networks, Vol. 13, 411-430, 2000.
doi:10.1016/S0893-6080(00)00026-5

13. Hyvarinen, A., "Gaussian moments for noisy independent component analysis," IEEE Signal Processing Letters, Vol. 6, No. 6, 145-147, 1999.
doi:10.1109/97.763148

14. Giannakis, G. and S. Shamsunder, "Modelling of non-Guassian array data using cumulants: DOA estimation of more sources with less sensors," Signal Processing, Vol. 30, No. 3, 279-297, 1993.
doi:10.1016/0165-1684(93)90014-2

15. Jiao, W. D. and S. X. Yang, "Study of noise removal techniques based on independent component analysis," Journal of Zhejiang University, Vol. 38, No. 7, 872-876, 2004.