Vol. 37
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-07-30
A Fast Epile+Fbsa Method Combined with Adaptive Cross Approximation for the Scattering from a Target Above a Large Ocean-Like Surface
By
Progress In Electromagnetics Research M, Vol. 37, 175-182, 2014
Abstract
The rigorous evaluation of the NRCS (Normalized Radar Cross Section) of an object above a one-dimensional sea surface (2D case) needs to numerically solve a set of discretized integral equations involving a large number of unknowns. Thus, the direct solution of the impedance matrix equation via LU decomposition becomes the most expensive step in the MoM (Method of Moments) procedure. So, in order to minimize the computation cost, the iterative domain decomposition method called EPILE (Extended Propagation-Inside-Layer Expansion) was used and then was combined with the FBSA (Forward-Backward with Spectral Acceleration) to calculate the local interactions on the rough sea surface. The resulting fast method is called EPILE+FBSA. In this paper, we take advantage of the rank-deficient nature of the coupling matrices, corresponding to the object-surface interactions, to further reduce the complexity of the method by using the ACA (Adaptive Cross Approximation). Thus, the coupling matrices are strongly compressed without a loss of accuracy and the memory requirement is then strongly reduced. For a cylinder above a rough sea surface, the results show the efficiency of the accelerated EPILE+FBSA+ACA method.
Citation
Gildas Kubicke, Christophe Bourlier, Sami Bellez, and Hongkun Li, "A Fast Epile+Fbsa Method Combined with Adaptive Cross Approximation for the Scattering from a Target Above a Large Ocean-Like Surface," Progress In Electromagnetics Research M, Vol. 37, 175-182, 2014.
doi:10.2528/PIERM14052503
References

1. Harrington, R. F., Field Computation by Moment Method, Macmillan, New York, 1968.

2. Bourlier, C., N. Pinel, and G. Kubicke, Method of Moments for 2D Scattering Problems. Basic Concepts and Applications, FOCUS SERIES in WAVES, Ed. WILEY-ISTE, 2013.

3. Dechamps, N., N. De Beaucoudrey, C. Bourlier, and S. Toutain, "Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation-inside-layer expansion method," Journal of the Optical Society of America A, Vol. 23, No. 2, 359-369, 2006.
doi:10.1364/JOSAA.23.000359

4. Kubicke, G., C. Bourlier, and J. Saillard, "Scattering by an object above a randomly rough surface from a fast numerical method: Extended PILE method combined with FB-SA," Waves in Random and Complex Media, Vol. 18, No. 3, 495-519, 2008.
doi:10.1080/17455030802087057

5. Kubicke, G., C. Bourlier, and J. Saillard, "Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method," Waves in Random and Complex Media, Vol. 20, No. 1, 156-178, 2010.
doi:10.1080/17455030903476712

6. Chou, H. T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method," Radio Science, Vol. 33, No. 5, 1277-1287, 1998.
doi:10.1029/98RS01888

7. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410

8. Bebendorf, M. and S. Rjasanow, "Adaptive low-rank approximation of collocation matrices," Computing, Vol. 70, No. 1, 1-24, 2003.
doi:10.1007/s00607-002-1469-6

9. Kurz, S., O. Rain, and S. Rjasanow, "The adaptive cross-approximation technique for the 3-D boundary element method," IEEE Transactions on Magnetics, Vol. 38, No. 2, 421-424, 2002.
doi:10.1109/20.996112

10. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computation of EMC problem," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

11. Shaeffer, J., "LU factorization and solve of low rank electrically large MoM problems for monostatic scattering using the adaptive cross approximation for problem sizes to 1 025 101 unknowns on a PC workstation," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1273-1276, Sep. 9-15, 2007.

12. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1M unknowns," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2306-2313, 2008.
doi:10.1109/TAP.2008.926739

13. Tamayo, J. M., A. Heldring, and J. M. Rius, "Multilevel adaptive cross approximation (MLACA)," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4600-4608, 2011.
doi:10.1109/TAP.2011.2165476

14. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandermark, "A unified directional spectrum for long and short wind-driven waves," Journal of Geophysical Research, Vol. 102, No. C7, 781-796, 1997.
doi:10.1029/97JC00467

15. Thorsos, E. I., "The validity of the Kirchho® approximation for rough surface scattering using a Gaussian roughness spectrum," Journal of the Acoustical Society of America, Vol. 83, 78-92, 1988.
doi:10.1121/1.396188

16. Hackbusch, W., "A sparse matrix arithmetic based on H-matrices. Part I. Introduction to H-matrices," Computing, Vol. 62, No. 2, 89-108, 1999.
doi:10.1007/s006070050015

17. Grasedyck, L. and W. Hackbusch, "Construction and arithmetics of H-matrices," Computing, Vol. 70, No. 4, 295-344, 2003.
doi:10.1007/s00607-003-0019-1