Vol. 39
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-23
An Analysis of Near-Field Scattering Characteristics of Rough Target: from the Perspective of Bidirectional Reflectance Distribution Function Based on LS-SVM
By
Progress In Electromagnetics Research M, Vol. 39, 1-9, 2014
Abstract
The near-field scattering characteristics of rough target are analyzed by using a revised bidirectional reflectance distribution function (BRDF) of a rough surface based on least squares support vector machine (LS-SVM). The revised BRDF is more reliable in a larger range of incident angles and scattering angles that beyond the scope of experimental measurements. The basic principle of LS-SVM and the modeling process are firstly introduced in detail. Then the comparison among LS-SVM, the back propagation neural network (BPNN) and the measured data is carried out.The results show that the LS-SVM model has better integrative performance, stronger generalization ability and higher precision. On this basis, the calculation of the near-field radar cross section (RCS) of a complex target is safely performed and analyzed. The method proposed is helpful to better investigate the near-field scattering characteristics of rough target.
Citation
Ning Li, Min Zhang, Ding Nie, and Wang-Qiang Jiang, "An Analysis of Near-Field Scattering Characteristics of Rough Target: from the Perspective of Bidirectional Reflectance Distribution Function Based on LS-SVM," Progress In Electromagnetics Research M, Vol. 39, 1-9, 2014.
doi:10.2528/PIERM14050801
References

1. Gibbs, D. P., C. L. Betty, A. K. Fung, and A. J. Blanchard, "Automated measurement of polarized bidirectional reflectance," Remote Sensing of Environment, Vol. 43, 97-114, 1993.
doi:10.1016/0034-4257(93)90067-8

2. Li, H. K., N. Pinel, and C. Bourlier, "A monostatic illumination function with surface reflections from one-dimensional rough surfaces," Waves in Random and Complex Media, Vol. 21, 105-134, 2011.
doi:10.1080/17455030.2010.524263

3. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Addison-Wesley, New York, 1982.

4. Arai, K., "Method for estimation of grow index of tealeaves based on Bi-directional reflectance distribution function: BRDF measurements with ground based network cameras," International Journal of Applied Sciences, Vol. 2, 52-62, 2011.

5. Jordan, D. L., "Experimental measurements of optical backscattering from surfaces of roughness comparable to the wavelength and their application to radar sea scattering," Waves in Random and Complex Media, Vol. 5, 41-54, 1995.
doi:10.1088/0959-7174/5/1/006

6. Cook, R. L. and K. E. Torrance, "A reflectance model for computer graphics," Computer Graphics, Vol. 15, 307-316, 1981.
doi:10.1145/965161.806819

7. Phong, B. T., "Illumination for computer generated pictures," Communications of the ACM, Vol. 18, 311-317, 1975.
doi:10.1145/360825.360839

8. Ward, G. J., "Measuring and modeling anisotropic reflection," Computer Graphics, Vol. 26, 265-272, 1992.
doi:10.1145/142920.134078

9. Oren, M. and S. K. Nayar, "Generalization of the Lambertian model and implications for machine vision," International Journal Computer Vision, Vol. 14, 227-251, 1995.
doi:10.1007/BF01679684

10. Li, W., J. F. Chen, and T. Wang, "Prediction of the plasma distribution using an artificial neural network," Chinese Physics B, Vol. 18, 2441-2444, 2009.
doi:10.1088/1674-1056/18/6/053

11. Vapnik, V., E. Levin, and Y. Le Cun, "Meaning the VC-dimension of a learning machine," Neural Computation, Vol. 6, 851-876, 1994.
doi:10.1162/neco.1994.6.5.851

12. Balabin, R. M. and E. I. Lomakina, "Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared," Analyst, Vol. 136, 1703-1712, 2011.
doi:10.1039/c0an00387e

13. Wang, H. F. and D. J. Hu, "Comparison of SVM and LS-SVM for regression," International Conference on Neural Networks and Brain, Vol. 1, 279-283, 2005.

14. Suykens, J. A. K. and J. Vandewaiie, "Least squares support vector machine classifiers," Neural Processing Letter, Vol. 9, 293-300, 1999.
doi:10.1023/A:1018628609742

15. Suykens, J. A. K., T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Vandewalle, Least Squares Support Vector Machines, World Scientific Publishers, Singapore, 2002.

16. Adankon, M. M., M. Cheriet, and A. Biem, "Semisupervised learning using Bayesian interpretation: Application to LS-SVM," IEEE Transactions on Neural Networks, Vol. 22, 513-524, 2011.
doi:10.1109/TNN.2011.2105888

17. Gestel, V., et al. "Financial time series prediction using least squares support vector machines within the evidence framework," IEEE Transactions on Neural Networks, Vol. 12, 809-821, 2001.
doi:10.1109/72.935093

18. Scholkopf, B. and S. Mika, "Input space vs. feature space in Kernel based methods," IEEE Trans. on Neural Networks, Vol. 10, 1000-1017, 1999.
doi:10.1109/72.788641

19. Fletcher, R., Practical Methods of Optimization, John Wiley and Sons, Chichester and New York, 1987.

20. Browne, M. W., "Cross-validation methods," Journal of Mathematical Psychology, Vol. 44, 108-132, 2000.
doi:10.1006/jmps.1999.1279

21. Guo, H., H. P. Liu, and L. Wang, "Method for selecting parameters of least squares support vector machines and application," Journal of System Simulation, Vol. 18, 2033-2036, 2006.

22. Hecht-Nielsen, R., "Theory of the backpropagation neural network," International Joint Conference on IEEE, 93-605, 1989.

23. Tomiyasu, K., "Relationship between and measurement of differential scattering coefficient and bidirectional reflectance distribution function (BRDF)," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, 660-665, 1988.
doi:10.1109/36.7692

24. Andrews, L. C., M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, "Theory of optical scintillation: Gaussian-beam wave model," Waves in Random and Complex Media, Vol. 11, 271-291, 2001.