Vol. 38
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-16
Simulations and Effects of Natural Environments on Low Frequency Antennas with Three-Dimensional FDTD Method
By
Progress In Electromagnetics Research M, Vol. 38, 45-52, 2014
Abstract
Three-dimensional Finite-Difference in Time-Domain method is applied to simulate Low Frequency antennas in the presence of natural environments. All antennas are made up of wires set down on a square shaped ground plane and their dimensions depend on the wavelength of the source. Both monopole and inverted L antennas are considered in this paper. The antenna systems are computed in the presence of two examples of natural elements: a large forest and then on the top of a hill. The main aim of this paper is to show the effects of these environments on the properties of the antennas and on the efficiency of the ground wave excitation. The outcome of these investigations shows a power ratio enhancement of several decibels when the two kinds of antenna described in this paper are located on the top of a hill. On the other hand, the effects of a large forest depend on the geometry of the antenna. It doesn't affect the radiation of a quarter-wave monopole antenna, on the contrary losses disrupt radiation when an inverted L antenna is built in the middle of a large forest.
Citation
Julien Vincent, Pierre Borderies, Jean-René Poirier, and Vincent Gobin, "Simulations and Effects of Natural Environments on Low Frequency Antennas with Three-Dimensional FDTD Method," Progress In Electromagnetics Research M, Vol. 38, 45-52, 2014.
doi:10.2528/PIERM14050701
References

1. Rudge, A. W., K. Milne, A. D. Olver, and K. Knight, The Handbook of Antenna Design Volumes 1 and 2, Peter Peregrinus Ltd, London, 1986.

2. Maclean, T. S. M. and Z. Wu, Radiowave Propagation Over Ground, Chapman & Hall, London, 1993.

3. DeMinco, N., "Propagation prediction techniques and antenna modeling (150 to 1705 kHz) for intelligent transportation systems (ITS) broadcast applications," IEEE Antennas and Propagation Magazine, Vol. 42, No. 4, 9-34, August 2000.
doi:10.1109/74.868050

4. Tsang, L., C.-C. Huang, C. H., and Chan, "Surface electric fields and impedance matrix elements of stratified media," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1533-1543, October 2000.
doi:10.1109/8.899670

5. Belrose, J. S., W. L. Hatton, C. A. McKerrow, and R. S. Thain, "The engineering of communication systems for low radio frequencies," Proceeding of the IRE, Vol. 47, No. 5, 661-680, May 1959.
doi:10.1109/JRPROC.1959.287236

6. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

7. Taflove, A. and S. C. Hagness, The Finite-Difference Time Domain Method, Artech House, London, 2005.

8. Zhou, L., X. Xi, J. Liu, and N. Yu, "LF ground-wave propagation over irregular terrain," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1254-1260, April 2011.
doi:10.1109/TAP.2011.2109693

9. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, No. 2, 88-97, May 1981.
doi:10.1109/TEMC.1981.303899

10. Hubral, P. and M. Tygel, "Analysis of the Rayleigh pulse," Geophysics, Vol. 54, No. 5, 654-658, May 1989.
doi:10.1190/1.1442692

11. Von Hippel, A. R., Dielectric Materials and Applications, M.I.T. Press, Cambridge, 1954.

12. Berenger, J. P., "A Perfectly Matched Layer for the absorption of electromagnetic waves," J. Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

13. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," IEEE Microwave Guided Wave Lett., Vol. 7, 599-604, 1994.

14. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Optical Tech. Lett., Vol. 27, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

15. De Moerloose, J. and M. A. Stuchly, "Behavior of Berenger’s ABC for evanescent waves," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 10, 344-346, October 1995.
doi:10.1109/75.465042

16. Gedney, S. D., "An anisotropic Perfectly Matched Layer absorbing medium for the truncation of FDTD lattices," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 12, 1630-1639, December 1996.
doi:10.1109/8.546249

17. Sommerfeld, A., "Propagation of waves in wireless telegraphy," Annalen der Physik, Vol. 28, 665-736, March 1909.
doi:10.1002/andp.19093330402

18. Tewari, R. K., S. Swarup, and M. N. Roy, "Evaluation of relative permittivity and conductivity of forest slab from experimental measured data on lateral wave attenuation constant," International Journal of Electronics, Vol. 61, 597-605, November 1986.

19. Millington, G., "Ground-wave propagation over an inhomogeneous smooth Earth," Proc. IRE, Vol. 96, No. 39, 53-64, 1949.