Vol. 36
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-06-11
A Novel Approach to Design of Microstrip UWB Bandpass Filter Using Modified Genetic Algorithm
By
Progress In Electromagnetics Research M, Vol. 36, 169-175, 2014
Abstract
A novel approach to design microstrip ultra-wideband (UWB) bandpass filter (BPF) using modified genetic algorithm (MGA) is proposed in this paper. To achieve high efficiency and accuracy, conventional GA is modified. By improving the fitness evaluation, selection, crossover, and mutation, the two possible drawbacks of conventional GA, i.e., slow rate of convergence and local-best solution, are overcome. The modified genetic algorithm is then applied to simultaneously search for the appropriate circuit topology and the corresponding electrical parameters with UWB characteristic. To demonstrate the effectiveness of the novel approach, a new microstrip UWB BPF is designed and fabricated. Measurement results agree well with the design index and full-wave EM simulated results.
Citation
Huaxia Peng, Junding Zhao, Hao Zhang, Minxian Du, Yufeng Luo, Xin Wang, and Wenhai Wang, "A Novel Approach to Design of Microstrip UWB Bandpass Filter Using Modified Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 36, 169-175, 2014.
doi:10.2528/PIERM14050402
References

1. FCC, , Revision of Part 15 of the commission's rules regarding ultra-wide-band transmission system, Tech. Rep., ET-Docket, 98-153, 2002.

2. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 796-798, 2005.
doi:10.1109/LMWC.2005.859011

3. Qiang, L., Y.-J. Zhao, Q. Sun, W. Zhao, and B. Liu, "A compact UWB HMSIW bandpass filter based on complementary split-ring resonators," Progress In Electromagnetics Research C, Vol. 11, 237-243, 2009.
doi:10.2528/PIERC09112102

4. Packiaraj, D., K. J. Vinoy, and A. T. Kalghatgi, "Analysis and design of two layered ultra wide band filter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1235-1243, 2009.

5. Wang, H., L. Zhu, and W. Menzel, "Ultra-wideband bandpass filter with hybrid microstrip/CPW structure," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 12, 844-846, 2005.
doi:10.1109/LMWC.2005.860016

6. Shobeyri, M. and M. H. Vadjed-Samiei, "Compact ultra-wideband bandpass filter with defected ground structure," Progress In Electromagnetics Research Letters, Vol. 4, 25-31, 2008.
doi:10.2528/PIERL08050205

7. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 87-93, 2008.
doi:10.2528/PIERL08020902

8. Comez-Garcia, R. and J. I. Alonso, "Systematic method for the exact synthesis of ultra-wideband filtering responses using high-pass and low-pass sections," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3751-3764, 2006.
doi:10.1109/TMTT.2006.882883

9. Hsu, M.-H. and J.-F. Huang, "Annealing algorithm applied in optimum design of 2.4 GHz and 5.2 GHz dual-wideband microstrip line filters," IEICE Trans. Electronics., Vol. E88C, No. 1, 47-56, 2005.
doi:10.1093/ietele/E88-C.1.47

10. Bandler, J.-W., R.-M. Biernacki, S.-H. Chen, D.-G. Swanson, and S. Ye, "Microstrip filter design using direct EM field simulation," IEEE Trans. Microw. Theory Tech., Vol. 42, 1353-1359, 1994.
doi:10.1109/22.299729

11. Sanada, H., H. Ito, M. Takezawa, and K. Watanabe, "Design of transmission line filters and matching circuits using genetic algorithms," IEE J. Trans. Electrical and Electronic Engineering, Vol. 2, 588-595, 2007.
doi:10.1002/tee.20213

12. Nishino, T. and T. Itoh, "Evolutionary generation of microwave line segment circuits by genetic algorithms," IEEE Trans. Microw. Theory Tech., Vol. 50, 2048-2055, 2002.
doi:10.1109/TMTT.2002.802314

13. Hsu, M.-H. and J.-F. Huang, "Annealing algorithm applied in optimum design of 2.4 GHz and 5.2 GHz dual-wideband microstrip line filters," IEICE Trans. Electronics., Vol. E88C, 47-56, 2009.

14. Tsai, L.-C. and C.-W. Hsue, "Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transforms technique," IEEE Trans. Microw. Theory Tech.,, Vol. 52, No. 4, 1111-1117, Apr. 2004.
doi:10.1109/TMTT.2004.825680

15. Nicholson, G.-L. and M.-J. Lancaster, "Coupling matrix synthesis of cross coupled microwave filters using a hybrid optimisation algorithm," IET Trans. Microw. Antennas Propag., Vol. 3, 950-958, 2008.

16. Wang, H., X. Tang, Y. Liu, and Y. Cao, "Analysis and design of ultra-wideband power divider by micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 10, 1341-1349, 2012.
doi:10.1080/09205071.2012.699405

17. Pozar, D. M., Microwave Engineering, Vol. 3rd, 412-415, Wiley, New York, USA, 2005.

18. Wu, X., Hu., Q. X. Chu, X. K. Tian, and O. Y. Xiao, "Quintuple-mode UWB bandpass filter with sharp roll-off and super-wide upper stopband," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 12, 661-663, 2011.
doi:10.1109/LMWC.2011.2170672

19. Peng, H., Y. Luo, and J. Zhao, "Compact microstrip UWB bandpass filter with two band-notches for UWB applications," Progress In Electromagnetics Research Letters, Vol. 45, 25-30, 2014.
doi:10.2528/PIERL14011504