Vol. 148
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-08-15
Microwave Resonators for Weak Light Detection at Telecom Wavelength
By
Progress In Electromagnetics Research, Vol. 148, 183-191, 2014
Abstract
We report the experimental measurements of weak light signal at 1550 nm wavelength with a high-quality factor microwave coplanar waveguide (CPW) resonators. The quality factor of this niobium λ/4 CPW resonator is measured as Q = 7.4×105 at ultra-low temperature (20 mK). With this device, we developed a technique to implement the proper fiber-resonator coupling, and realized the desirable weak light detection at telecommunication wavelength with 35 pW resolution by probing the shift of resonance frequency (f0). We found that the resonator shift increases with the increasing light power (from 11.7 pW to 9.77 nW), similar to the effects of increasing the system temperature (from 20 mK to 800 mK). The observed blue shifts of f0 (with the increasing of either the temperature and the applied light powers) are thoroughly deviated from the usual Mattis-Bardeen theory prediction, and could be explained by the effects relating to the two-level system existed on surface of the CPW device.
Citation
Pin-Jia Zhou, Yiwen Wang, Qiang Wei, and Lian-Fu Wei, "Microwave Resonators for Weak Light Detection at Telecom Wavelength," Progress In Electromagnetics Research, Vol. 148, 183-191, 2014.
doi:10.2528/PIER14050308
References

1. Horodecki, R., P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum entanglement," Rev. Mod. Phys., Vol. 81, 865-942, 2009.
doi:10.1103/RevModPhys.81.865

2. Fukuda, D., G. Fujii, T. Numata, K. Amemiya, et al. "Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling," Opt. Express, Vol. 19, No. 2, 870-875, 2011.
doi:10.1364/OE.19.000870

3. Namekata, N., Y. Takahashi, G. Fujii, D. Fukuda, et al. "Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength," Nature Photonics, Vol. 4, 655-660, 2010.
doi:10.1038/nphoton.2010.158

4. Ekert, A. K., "Quantum cryptography based on Bells theorem," Phys. Rev. Lett., Vol. 67, 661-663, 1991.
doi:10.1103/PhysRevLett.67.661

5. Goltsman, G. N., O. Okunev, G. Chulkova, A. Lipatov, et al. "Picosecond superconducting singlephoton optical detector," Appl. Phys. Lett., Vol. 79, No. 6, 705-707, August 2001.
doi:10.1063/1.1388868

6. Eisenmenger, W., Superconducting Tunnelling Junctions as Phonon Generators and Detectors, 2010.

7. Irwin, K. D., "An application of electrothermal feedback for high resolution cryogenic particle detection," Appl. Phys. Lett., Vol. 66, April 1995.

8. Lita, A. E., A. J. Miller, and S. W. Nam, "Counting near-infrared single-photons with 95% efficiency," Opt. Express, Vol. 16, 3032-3040, 2008.
doi:10.1364/OE.16.003032

9. Day, P. K., H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature, Vol. 425, 817-821, October 2003.

10. Mazin, B. A., B. Bumble, and P. K. Day, "Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors," Appl. Phys. Lett., Vol. 89, No. 22, 222507, 2006.
doi:10.1063/1.2390664

11. Noroozian, O., P. K. Day, B. H. Eom, H. G. LeDuc, et al. "Crosstalk reduction for superconducting microwave resonator arrays," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, May 2012.
doi:10.1109/TMTT.2012.2187538

12. Mattis, D. C. and J. Bardeen, "Theory of the anomalous skin effect in normal and superconducting metals," Phys. Rev., Vol. 111, 412-417, 1958.
doi:10.1103/PhysRev.111.412

13. Tinkham, M., Introduction to Superconductivity, 2nd Ed., McGraw-Hill, New York, 1996.

14. Barends, R., J. J. A. Baselmans, J. N. Hovenier, J. R. Gao, et al. "Niobium and Tantalum high Q resonators for photon detectors," IEEE Trans. Appl. Supercond., Vol. 17, 263, 2007.
doi:10.1109/TASC.2007.898541

15. Quaranta, O., T.W. Cecil, and A. Miceli, "Tungsten silicide alloys for microwave kinetic inductance detectors," IEEE Trans. Appl. Supercond., Vol. 23, No. 3, 2400104, June 2013.
doi:10.1109/TASC.2012.2232963

16. Gao, J. S., M. Daal, A. Vayonakis, S. Kumar, et al. "Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators," Appl. Phys. Lett., Vol. 92, 152505, 2008.
doi:10.1063/1.2906373

17. Li, H. J., Y. W. Wang, L. F. Wei, P. J. Zhou, et al. "Experimental demonstrations of high-Q superconducting coplanar waveguide resonators," Chinese Sci. Bull., Vol. 58, No. 1, 1-5, 2012.

18. Hammer, G., S. Wuensch, M. Roesch, K. Ilin, et al. "Coupling of microwave resonators to feed lines," IEEE Trans. Appl. Supercond., Vol. 19, No. 3, June 2009.
doi:10.1109/TASC.2009.2018476

19. Mazin, B. A., Microwave Kinetic Inductance Detectors, 2005.

20. Ponchak, G. E., J. Papapolymerou, and M. M. Tentzeris, "Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 713, 2005.

21. Kumar, S., J. S. Gao, J. Zmuidzinas, B. A. Mazin, et al. "Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators," Appl. Phys. Lett., Vol. 92, 123503, 2008.
doi:10.1063/1.2894584

22. Wisbey, D. S., J. S. Gao, M. R. Vissers, F. C. S. da Silva, et al. "Effect of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides," J. Appl. Phys., Vol. 108, 093918, 2010.
doi:10.1063/1.3499608

23. Khalil, M. S., F. C. Wellstood, and K. D. Osborn, "Loss dependence on geometry and applied power in superconducting coplanar resonators," IEEE Trans. Appl. Supercond., Vol. 21, No. 3, June 2011.
doi:10.1109/TASC.2010.2090330

24. Phillips, W. A., "Two-level states in glasses," Rep. Prog. Phys., Vol. 50, 1657-1708, 1987.
doi:10.1088/0034-4885/50/12/003

25. Phillips, W. A., "Tunneling states in amorphous solids," J. Low Temp. Phys., Vol. 7, 351, 1972.
doi:10.1007/BF00660072

26. Anderson, P. W., B. I. Halperin, and C. M. Varma, "Anomalous low-temperature thermal properties of glasses and spin glasses," Philos. Mag., Vol. 25, No. 1, 1972.
doi:10.1080/14786437208229210

27. Gao, J., M. R. Vissers, M. O. Sandberg, F. C. S. da Silva, et al. "A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics," Appl. Phys. Lett., Vol. 101, 142602, 2012.
doi:10.1063/1.4756916

28. Wuensch, S., R. Prinz, C. Groetsch, and M. Siegel, "Optimized microwave LEKID arrays for high-resolution applications," IEEE Trans. Appl. Supercond., Vol. 23, No. 3, June 2013.
doi:10.1109/TASC.2013.2251056