Vol. 147
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-06-15
A STED Microscope Designed for Routine Biomedical Applications (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 147, 57-68, 2014
Abstract
We present a multi-color STED fluorescence microscope providing far-field optical resolution down to 20 nm for biomedical research. The optical design comprises fiber lasers, beam scanners, and a set of active and passive polarizing elements that cooperatively yield an optically robust system for routinely imaging samples at subdiffraction length scales.
Citation
Frederik Gorlitz, Patrick Hoyer, Henning Falk, Lars Kastrup, Johann Engelhardt, and Stefan W. Hell, "A STED Microscope Designed for Routine Biomedical Applications (Invited Paper)," Progress In Electromagnetics Research, Vol. 147, 57-68, 2014.
doi:10.2528/PIER14042708
References

1. Hell, S. W. and J. Wichmann, "Breaking the diffraction resolution limit by stimulated-emission --- Stimulated-emission-depletion fluorescence microscopy," Optics Letters, Vol. 19, No. 11, 780-782, 1994.
doi:10.1364/OL.19.000780

2. Klar, T. A., et al. "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 15, 8206-8210, 2000.
doi:10.1073/pnas.97.15.8206

3. Westphal, V. and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Physical Review Letters, Vol. 94, 143903, 2005.
doi:10.1103/PhysRevLett.94.143903

4. Hell, S. W., "Toward fluorescence nanoscopy," Nature Biotechnology, Vol. 21, No. 11, 1347-1355, 2003.
doi:10.1038/nbt895

5. Hell, S. W. and M. Kroug, "Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit," Applied Physics B: Lasers and Optics, Vol. 60, 495-497, 1995.
doi:10.1007/BF01081333

6. Hell, S. W., S. Jakobs, and L. Kastrup, "Imaging and writing at the nanoscale with focused visible light through saturable optical transitions," Applied Physics A: Materials Science & Processing, Vol. 77, 859-860, 2003.
doi:10.1007/s00339-003-2292-4

7. Rust, M. J., M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical econstruction microscopy (STORM)," Nature Methods, Vol. 3, 793-795, 2006.
doi:10.1038/nmeth929

8. Betzig, E., et al. "Imaging intracellular fluorescent proteins at nanometer resolution," Science, Vol. 313, No. 5793, 1642-1645, 2006.
doi:10.1126/science.1127344

9. Hess, S. T., T. P. K. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophysical Journal, Vol. 91, No. 11, 4258-4272, 2006.
doi:10.1529/biophysj.106.091116

10. Dertinger, T., et al. "Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements," Chem. Phys. Chem., Vol. 8, No. 3, 433-443, 2007.
doi:10.1002/cphc.200600638

11. Hell, S. W., "Far-field optical nanoscopy," Science, Vol. 316, No. 5828, 1153-1158, 2007.
doi:10.1126/science.1137395

12. Willig, K. I., et al. "STED microscopy with continuous wave beams," Nature Methods, Vol. 4, No. 11, 915-918, 2007.
doi:10.1038/nmeth1108

13. Voloshinov, V. B., L. N. Magdich, and G. A. Knyazev, "Tunable acousto-optic filters with the multiple interaction of light and sound," Quantum Electronics, Vol. 35, No. 11, 1057-1063, 2005.
doi:10.1070/QE2005v035n11ABEH013035

14. Gottfert, F., et al. "Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20nm resolution," Biophysical Journal, Vol. 105, No. 1, L01-L03, 2013.
doi:10.1016/j.bpj.2013.05.029

15. Moffitt, J. R., C. Osseforth, and J. Michaelis, "Time-gating improves the spatial resolution of STED microscopy," Optics Express, Vol. 19, No. 5, 4242-4254, 2011.
doi:10.1364/OE.19.004242

16. Vicidomini, G., et al. "STED nanoscopy with time-gated detection: theoretical and experimental aspects," PLoS One,, Vol. 8, No. 1, e54421-1-e54421-12, 2013.
doi:10.1371/journal.pone.0054421

17. Wildanger, D., et al. "A STED microscope aligned by design," Optics Express, Vol. 17, No. 18, 16100-16110, 2009.
doi:10.1364/OE.17.016100

18. Reuss, M., J. Engelhardt, and S. W. Hell, "Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation," Optics Express, Vol. 18, No. 2, 1049-1058, 2010.
doi:10.1364/OE.18.001049

19. Bingen, P., et al. "Parallelized STED fluorescence nanoscop," Optics Express, Vol. 19, No. 24, 23716-23726, 2011.
doi:10.1364/OE.19.023716

20. Schreiber, F., Device and Method for Distributing Illumination Light and Detection Light in a Microscope, 2013.

21. Donnert, G., et al. "Two-color far-field fluorescence nanoscopy," Biophysical Journal, Vol. 92, No. 8, L67-L69, 2007.
doi:10.1529/biophysj.107.104497

22. Buckers, J., et al. "Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses," Optics Express, Vol. 19, No. 4, 3130-3143, 2011.
doi:10.1364/OE.19.003130

23. Salthouse, C. D., R. Weissleder, and U. Mahmood, "Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis," IEEE Transactions on Biomedical Circuits and Systems, Vol. 2, No. 3, 204-211, 2008.
doi:10.1109/TBCAS.2008.2003195

24. Demandolx, D. and J. Davoust, "Multicolour analysis and local image correlation in confocal microscopy," Journal of Microscopy-Oxford, Vol. 185, 21-36, 1997.
doi:10.1046/j.1365-2818.1997.1470704.x

25. Dickinson, M. E., et al. "Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy," Biotechniques, Vol. 31, No. 6, 1272, 2001.

26. Neher, R. A., et al. "Blind source separation techniques for the decomposition of multiply labeled fluorescence images," Biophys. J., Vol. 96, No. 9, 3791-3800, 2009.
doi:10.1016/j.bpj.2008.10.068