Vol. 37
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-06-27
Micro-Doppler Extraction and Analysis of the Ballistic Missile Using RDA Based on the Real Flight Scenario
By
Progress In Electromagnetics Research M, Vol. 37, 83-93, 2014
Abstract
Micro-Doppler (MD) caused by the motion of the ballistic missile can contribute to successful recognition of the ballistic missile. Considering the real observation scenario. This paper proposes a method to derive the MD image of the ballistic missile by applying the range-Doppler algorithm (RDA) based on the real flight scenario and analyzes the factor for the real-time MD imaging. Simulation results using the flight trajectory constructed using the real target parameter demonstrate that we need a new cost function for phase adjustment and a new method for range alignment. In addition, matched-filtering needs to be performed in the baseband, and a sufficient PRF is required to prevent discontinuity of the MD image. Dechirping of MD and filtering of the random movement are also needed for a clear MD image.
Citation
Joo-Ho Jung, Kyung-Tae Kim, Si-Ho Kim, and Sang-Hong Park, "Micro-Doppler Extraction and Analysis of the Ballistic Missile Using RDA Based on the Real Flight Scenario," Progress In Electromagnetics Research M, Vol. 37, 83-93, 2014.
doi:10.2528/PIERM14040804
References

1. Chen, V. C., The Micro-Doppler Effect in Radar, Artech House, 2011.

2. Chen, V. C., F. Li, S. Ho, and H.Wechsler, "Micro-Doppler effect in radar," IEEE Trans. Aerospace Electron Syst., Vol. 42, No. 1, 2-21, Oct. 1996.
doi:10.1109/TAES.2006.1603402

3. Gao, H., L. Xie, S. Wen, and Y. Kuang, "Micro-Doppler signature extraction from ballistic target with micro-motions," IEEE Trans. Aerospace Electron Syst., Vol. 46, No. 4, 1969-1982, Oct. 2010.
doi:10.1109/TAES.2010.5595607

4. Liu, L., X. Du, M. Ghogho, W. Hu, and D. McLernon, "Precession missile feature extraction using sparse component analysis of radar measurements," EURASIP J. Adv. Sig. Pr., Vol. 2012, No. 24, 1-10, Feb. 2012.

5. Park, S.-H., J.-H. Lee, and K.-T. Kim, "Performance analysis of the scenario-based construction method for real target ISAR recognition," Progress In Electromagnetics Research, Vol. 129, 137-151, 2012.
doi:10.2528/PIER12032210

6. Park, J.-H. and N. H. Myung, "Enhanced and efficient ISAR image focusing using the discrete Gabor representation in an oversampling scheme," Progress In Electromagnetics Research, Vol. 138, 227-244, 2013.
doi:10.2528/PIER13022004

7. Naqvi, A. and H. Ling, "Time-frequency and ISAR characteristics of wind turbines with higher order motions," Progress In Electromagnetics Research, Vol. 143, 331-347, 2013.
doi:10.2528/PIER13100909

8. Choi, I.-O., J.-H. Jung, S.-H. Kim, K.-T. Kim, and S.-H. Park, "Classification of targets improved by fusion of the range profile and the inverse synthetic aperture radar image," Progress In Electromagnetics Research, Vol. 144, 23-31, 2013.

9. Mahafza, B., MATLAB Simulations for Radar Systems Design Using MATLAB, Chapter 7, Champman & Hall/CRC Press LLC, Jan. 2000.
doi:10.1201/9781584888543

10. Soumekh, M., Synthetic Aperturer Radar Signal Processing with MATLAB Algorithms, John Wiley & Sons, Inc., 1999.

11. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms, Artech House, 1995.

12. Skolnik, M. I., Introduction to Radar Systems, 3rd Ed., McGraw-Hill Companies, Inc., 2001.

13. Hale, F. J., Introduction to Space Flight, Prentice Hall, 1993.

14. Kim, N.-J., "A study on the analysis of the °ight trajectory characteristics for ballistic missiles,", M.S. Thesis, Korea National Defense University, Seoul, 1999.

15. Li, X., G. Liu, and J. Ni, "Autofocusing of ISAR images based on entropy minimization," IEEE Trans. Aerospace Electron Syst., Vol. 35, No. 4, 1240-1251, Oct. 1999.
doi:10.1109/7.805442

16. Jung, H. R., H. T. Ki, and K. T. Kim, "Application of subarray averaging and entropy minimization algorithm to stepped-frequency ISAR autofocus," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1144-1154, 2008.
doi:10.1109/TAP.2008.919208

17. Wang, J., X. Liu, and Z. Zhou, "Minimum-entropy phase adjustment for ISAR," IEE Proc. of Radar, Sonar and Nav., Vol. 151, No. 4, 203-209, Aug. 2004.
doi:10.1049/ip-rsn:20040692

18. Qian, S., Introduction to Time-frequency and Wavelet Transforms, Prentice Hall, 2002.

19. Chen, V. C. and H. Ling, Time-frequency Transforms for Radar Imaging and Signal Analysis, Artech House, 2002.