Vol. 37
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-07-29
Design of Tiny Versatile UHF RFID Tags of Fragment-Type Structure
By
Progress In Electromagnetics Research M, Vol. 37, 161-173, 2014
Abstract
Small ultra high frequency (UHF) radio frequency identification (RFID) tags of fragment-type structure can be designed for broadband operation and for versatile impedance matching to different chips. The fragment-type tag structure can be optimized by using genetic algorithm. In our design, multi-objective evolutionary algorithm based on decomposition combined with enhanced genetic operators (MOEA/D-GO) is used for optimization searching. The multiple objectives are defined in terms of power transmission coefficients for operation in multiple RFID bands and for impedance matching to several prevailing RFID chips. For demonstration, a fragmented tiny square UHF tag of dimensions of 5.5 mm * 5.5 mm is designed for multi-band operation over the 433 MHz, 869 MHz and 915 MHz RFID bands, and a fragmented round tiny RFID tag of radius of 4.5 mm is also designed for versatile connection to five prevailing RFID chips at 915 MHz. The tiny round versatile tag is tested by connecting two chips, the IMPIMJ Monza-4 chip (11-143j) and ALIEN Higgs-3 chip (27-195j), respectively. Effects of input impedance and adjunct fragments on versatility of the design are further discussed.
Citation
Chenwei Yang, Gang Wang, and Da-Wei Ding, "Design of Tiny Versatile UHF RFID Tags of Fragment-Type Structure," Progress In Electromagnetics Research M, Vol. 37, 161-173, 2014.
doi:10.2528/PIERM14040302
References

1. Deng, J. H., W. S. Chan, B. Z. Wang, S. Y. Zheng, and K. F. Man, "An RFID multicriteria coarse and fine-Space tag antenna design," IEEE Trans. Ind. Electron., Vol. 58, 2522-2530, 2011.
doi:10.1109/TIE.2010.2062479

2. Babar, A., A. Elsherbeni, L. Sydanheimo, and L. Ukkonen, "RFID tags for challenging environments: Flexible high-dielectric materials and ink-jet printing technology for compact platform tolerant RFID tags," IEEE Microwave Mag., Vol. 14, 26-35, 2013.
doi:10.1109/MMM.2013.2259391

3. Marrocco, G., "Pervasive electromagnetics: Sensing paradigms by passive RFID technology," IEEE Wireless. Commun., Vol. 17, 10-17, 2010.
doi:10.1109/MWC.2010.5675773

4. Gao, J., J. Siden, and H.-E. Nilsson, "Printed electromagnetic coupler with an embedded moisture sensor for ordinary passive RFID tags," IEEE Electr. Devi. Lett., Vol. 32, 1767-1769, 2011.
doi:10.1109/LED.2011.2170616

5. Virtanen, J., L. Ukkonen, T. Bjorninen, A. Z. Elsherbeni, and L. Sydanheimo, "Inkjet-printed humidity sensor for passive UHF RFID systems," IEEE Trans. Instrument. Measurem., Vol. 60, 2768–-2777, 2011.
doi:10.1109/TIM.2011.2130070

6. Virkki, J., T. Bjorninen, T. Kellomaki, S. Merilampi, I. Shafiq, L. Ukkonen, L. Sydanheimo, and Y. C. Chan, "Reliability of washable wearable screen printed UHF RFID tags," Microelectron. Reliab., Vol. 54, 840-846, 2014.
doi:10.1016/j.microrel.2013.12.011

7. Amin, Y., Q. Chen, L. R. Zheng, and H. Tenhunen, "Development and analysis of flexible UHF antennas for green electronics," Progress In Electromagnetics Research, Vol. 130, 1-15, 2012.
doi:10.2528/PIER12060609

8. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electr. Lett., Vol. 36, 2057-2058, Dec. 2000.
doi:10.1049/el:20001452

9. Herscovici, N., M. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas Wirel. Propag. Lett., Vol. 1, 94-97, Jan. 2002.
doi:10.1109/LAWP.2002.805128

10. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prodo, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. Antennas Propag., Vol. 52, 1434-1445, Jun. 2004.
doi:10.1109/TAP.2004.825648

11. Thors, B., H. Steyskal, and H. Holter, "Broad-band fragmented aperture phased array element design using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 53, 3280-3287, Oct. 2005.
doi:10.1109/TAP.2005.856340

12. Ethier, J., D. McNamara, M. Chaharmir, and J. Shaker, "Reflectarray design using similarity-shaped fragmented sub-wavelength elements," Electr. Lett., Vol. 48, 900-902, 2012.
doi:10.1049/el.2012.1457

13. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Trans. Antennas Propag., Vol. 53, 1939-1945, Jun. 2005.
doi:10.1109/TAP.2005.848461

14. John, M. and M. Amman, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas Wirel Propag. Lett., Vol. 6, 447-449, 2007.
doi:10.1109/LAWP.2007.891962

15. Kim, G. J. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," Proc. IEEE Int. Symp. Antennas Propag., 2087-2090, 2006.

16. Jin, Z., H. Yang, X. Tang, and J. Mao, "Impedance analysis of the fragment-type tag antenna using FDTD," Proc. 8th Int. Symp. Antennas, Propag. and EM Theory, 260-262, 2010.

17. Jin, Z., H. Yang, X. Tang, and J. Mao, "Parameters and schemes selection in the optimization of the fragment-type tag antenna," Proc. 3rd Int. Joint Conf. Comput. Sci. Optim., Vol. 2, 259-262, 2010.

18. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. Evol. Comput., Vol. 11, No. 6, 712-731, Dec. 2007.
doi:10.1109/TEVC.2007.892759

19. Li, H. and Q. Zhang, "Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II," IEEE Trans. Evol. Comput., Vol. 13, 284-302, Apr. 2009.
doi:10.1109/TEVC.2008.925798

20. Ding, D. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013.
doi:10.2528/PIERM13071610

21. Marrocco, G., "The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques," IEEE Antennas Propag. Mag., Vol. 50, No. 1, 66-79, 2008.
doi:10.1109/MAP.2008.4494504

22. Loo, C. H., K. Elmahgoub, and F. Yang, "Chip impedance matching for UHF RFID tag antenna design," Progress In Electromagnetics Research, Vol. 81, 359-370, 2008.
doi:10.2528/PIER08011804

23. Kurokawa, K., "Power waves and the scattering matrix Techniques,", Vol. 13, 194-202, 1965.

24. Ansoft HFSS (High Frequency Structure Simulator), http://www.ansoft.com/products/hf/hfss/, .

25. Matlab (Matrix Laboratory), http://www.mathworks.cn/products/matlab/, .

26. Impinj Monza-4, http://www.impinj.com/Monza RFID Chips.aspx, .

27. Alien Higgs-3, http://www.alientechnology.com/ic/, .

28. Alien Higgs-4, http://www.alientechnology.com/ic/, .

29., TI RI-UHF-STRAP-08, http://www.alldatasheet.com/datasheet-pdf/pdf/-177692/TI/RI-UHFSTRAP-08.html.

30., NXP UCODE G2XM, http://www.nxp.com/products/identification an-d security/smart_label_and_tag_ics/ucode/#overview..