Vol. 36
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-04-30
Theoretical Study on Single-Scattering Properties of Ice Particles of Different Orientation at 94 GHz
By
Progress In Electromagnetics Research M, Vol. 36, 39-46, 2014
Abstract
The single-scattering properties of hexagonal columns and plates were studied using Discrete Dipole Approximation at 94GHz, including scattering efficiency, absorption efficiency, asymmetry factor, backscattering cross section and phase function. Random and horizontal orientations of particles were compared, and 35 sizes of maximum dimension D ranging from 1 um to 10 mm were selected. The results indicate that scattering and absorption efficiencies of horizontally oriented hexagonal columns are larger than those of the randomly oriented ones, whereas this phenomenon does not appear to hexagonal plates. The asymmetry factor of horizontally oriented hexagonal plates has a negative value, which means that the backscattered energy is more than forward energy when the particle is large enough. The backscattering cross sections of horizontally oriented hexagonal columns and plates are larger than those of random orientation, which can be explained by that different cross sections of particles will be exposed to incident plane wave. When the particle size is smaller than incident wavelength, little scattering energy difference between random and horizontal orientation exists, while if the particle is larger than incident wavelength, a turning point will happen at θ=110˚, which can be explained by the theory of energy conservation.
Citation
Jinhu Wang, Jun-Xiang Ge, and Ming Wei, "Theoretical Study on Single-Scattering Properties of Ice Particles of Different Orientation at 94 GHz ," Progress In Electromagnetics Research M, Vol. 36, 39-46, 2014.
doi:10.2528/PIERM14033106
References

1. Liou, K. N., "Influence of cirrus clouds on weather and climate processes: A global perspective," Mon. Wea. Rev., Vol. 14, 1167-1199, 1986.
doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2

2. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: A review," J. Quant. Spectrosc. Radiant. Transfer, Vol. 55, 535-575, 1996.
doi:10.1016/0022-4073(96)00002-7

3. Yang, P. and K. N. Liou, "Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space," J. Opt. Soc. Am. A, Vol. 13, 2072-2085, 1996.
doi:10.1364/JOSAA.13.002072

4. Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, "Parameterization of the scattering and absorption properties of individual ice crystals," J. Geophys. Res., Vol. 105, 4699-4718, 2000.
doi:10.1029/1999JD900755

5. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculation," J. Opt. Soc. Am. A, Vol. 11, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491

6. Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, et al. "Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region," Appl. Opt., Vol. 44, 5512-5523, 2005.
doi:10.1364/AO.44.005512

7. Hong, G., "Radar backscattering properties of nonspherical ice crystals at 94 GHz," J. Geophys. Res., Vol. 112, D22203-D008839, 2007, Doi: 10.1029/2007JD008839.

8. Zhang, Z., "Computation of the scattering properties of nonspherical ice crystals,", 57-78, Thesis of Degree of Master of Science, Texas A&M University, 2004.

9. Purcell, E. M. and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys J., Vol. 186, 705-714, 1973.
doi:10.1086/152538

10. Draine, B. T. and P. J. Flatau, "User guide for the discrete dipole approximation code DDSCAT 7.2," Computational Physics, 1-95, Princeton University Observatory, 2012.

11. Liu, G., "Approximation of single scattering properties of ice and snow particles for high microwave frequencies," Journal of the Atmospheric Sciences, Vol. 61, 2441-2456, 2004.
doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2

12. Vogelmann, A. M. and T. P. Ackerman, "Relating cirrus cloud properties to observed fluxes: A critical assessment," J. Atmos. Sci., Vol. 52, 4285-4301, 1995.
doi:10.1175/1520-0469(1995)052<4285:RCCPTO>2.0.CO;2

13. Hong, G., "Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies," J. Geophys. Res., Vol. 112, D11208, 2007, Doi: 10.1029/2006JD008364.

14. Sassen, K., "The polarization lidar technique for cloud research: A review and current assessment," Bull. Am. Meteorol. Soc., Vol. 72, 1848-1866, 1991.
doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2

15. Noel, V. and H. Chepfer, "Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements," J. Atmos. Sci., Vol. 61, No. 16, 2073-2081, 2004.
doi:10.1175/1520-0469(2004)061<2073:SOICOI>2.0.CO;2

16. Takano, Y. and K. N. Liou, "Radiative transfer in Cirrus clouds. Part III, Light scattering by irregular ice crystals," Journal of the Atmospheric Sciences, Vol. 52, 818-837, American Meteorological Society, 1995.

17. Evans, K. F. and G. L. Stephens, "Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I: Single scattering properties," J. Atmos. Sci., Vol. 52, 4367-4385, 1995.

18. Aydin, K. and C. Tang, "Millimeter wave radar scattering from model ice crystal distributions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 1, 140-146, 1997.
doi:10.1109/36.551942