Vol. 36
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-05
A Dual Grating Waveguide Structure for Wakefield Acceleration at THz
By
Progress In Electromagnetics Research M, Vol. 36, 47-56, 2014
Abstract
A dual grating waveguide accelerator structure is investigated and compared with the dielectric wakefield accelerator at THz frequencies. In a dielectric wakefield accelerator, thinner liners for a given current and liners having lower dielectric constant are not preferable due to the fact that they generate much lower axial wakefields. This limits the operation of the device at THz. On the other hand, it is shown that a grating waveguide is tuned at THz with shallower slot heights with competitive wakefield gradients than a dielectric wakefield accelerator.
Citation
Ganeswar Mishra, and Geetanjali Sharma, "A Dual Grating Waveguide Structure for Wakefield Acceleration at THz ," Progress In Electromagnetics Research M, Vol. 36, 47-56, 2014.
doi:10.2528/PIERM14032203
References

1. Keinigs, R., W. Peter, and M. Jones, "A comparison of the dielectric and plasma wakefield accelerators," Physics Fluids B, Vol. 1, No. 9, 1872, 1989.

2. Chen, P., J. M. Dawson, R. W. Huff, and T. Katosouleas, "Acceleration of electrons by the interaction of a bunched electron beam with a plasma," Physics Review Letters, Vol. 5, 693, 1985.

3. Ruth, R. D., A. Chao, P. L. Morton, and P. B. Wilson, "A Plasma Wake Field Accelerator,", 3374, SLAC-PUB, 1984.

4. Sotnikov, G. V., K. V. Galaydych, V. A. Kiselev, P. I. Markov, and I. N. Onishchenko, "Optimization of rectangular dielectric structures for the planned wake-field acceleration experiments in KIPT," Proceedings of IPAC 2013, TUPEA057, 1262, Shanghai, China, 2013.

5. Sotnikov, G. V., T. C. Marshall, and J. L. Hirshfield, "Co-axial two-channel high-gradient dielectric wake field accelerator," Physical Review Special Topics-accelerators and Beams, Vol. 12, 061302, 2009.

6. Plettner, T. and R. L. Byer, "Proposed dielectric-based microstructure laser-driven undulator," Physical Review Special Topics --- Accelerators and Beams, Vol. 11, 030704, 2008.

7. Wang, C. and J. L. Hirshfield, "Theory for wake fields in a multi-zone dielectric lined wave guide," Physical Review Special Topics --- Accelerators and Beams, Vol. 9, 031301, 2006.

8. Rosing, M. and W. Gai, "Longitudinal- and transverse-wake-field effects in dielectric structures," Physical Review D, Vol. 42, No. 5, 1829, 1990.

9. Keinigs, R. and M. E. Jones, "The Cherenkov wakefield accelerator," Particle Accelerators, Vol. 24, 223-229, 1989.

10. Garate, E., "Transverse wake fields due to nonaxisymmetric drive beams in the dielectric wake-field accelerator," Physics Fluids B, Vol. 3, No. 4, 1104, 1991.

11. Jing, C., A. Kanareykin, J. G. Power, M. Conde, W. Liu, S. Antipov, P. Schoessow, and W. Gai, "Experimental demonstration of wakefield acceleration in a tunable dielectric loaded accelerating structure," Physical Review Letters, Vol. 106, 164802, 2011.

12. Altmark, A. M., A. D. Kanareykin, and I. L. Sheinman, "Tunable wakefield dielectric-filled accelerating structure," Technical Physics, Vol. 50, No. 1, 87-95, 2005.

13. Kanareykin, A., et al. "Ferroelectric based technologies for accelerator component applications," PAC 2007, MOPAS087, Albuquerque, 2007.

14. Smith, S. J. and E. M. Purcell, "Visible light from localized surface charges moving across a grating," Physics Review, Vol. 92, No. 4, 1069, 1953.

15. Garate, E., R. Cherry, A. Fisher, and P. Philips, "High gain metal grating free electron laser," Journal of Applied Physics, Vol. 64, No. 12, 6618, 1988.

16. Andrews, H. L., J. E. Walsh, and J. H. Brownell, "Designing a grating based free electron laser," Nuclear Instrument and Methods in Physics Research A, Vol. 483, 478-481, 2002.

17. Maragos, A. A., Z. C. Ioannidis, and I. G. Tigelis, "Dispersion characteristics of a rectangular waveguide grating," IEEE Transactions on Plasma Science, Vol. 31, No. 5, 1075, 2003.

18. Walsh, J. E., "Electron beams diffraction gratings and radiation," Nuclear Instrument and Methods in Physics Research A, Vol. 445, 214-221, 2000.

19. Andrews, H. L., C. H. Boulware, C. A. Brau, J. T. Donohue, J. Gardelle, and J. D. Jarvis, "Effect of reflections and losses in Smith-Purcell free-electron lasers," New Journal of Physics, Vol. 8, No. 289, 16, 2006.

20. Andrews, H. L., C. A. Brau, and J. D. Jarvis, "Three-dimensional theory for a Smith-Purcell free-electron laser with grating sidewalls," Proceedings of FEL'08, MOPPH005, 17, Korea, 2008.

21. Li, D. and K. Imasaki, "Improvement of grating for smith-purcell device," Terahertz Science and Technology, Vol. 1, No. 4, 221, 2008.

22. Lu, Z.-G., Y.-B. Gong, Y.-Y. Wei, and W.-X. Wang, "Study of the double rectangular waveguide grating slow-wave structure," Chinese Physics, Vol. 15, No. 11, 2661, 2006.

23. Liu, W., Z. Liang, Z. Yang, D. Li, and K. Imasaki, "Two-stream Smith-Purcell free-electron laser using a dual-grating: Linear analysis," Proceedings of FEL'06, 111-114, Bessy, Berlin, Germany, 2006.

24. Li, D., Z. Yang, Y. Tsunawaki, M. R. Asakawa, M. Hangyo, et al. "Improve growth rate of Smith-Purcell free-electron laser by Bragg reflector," Applied Physics Letters, Vol. 98, 211503, 2011.

25. Prokop, C., P. Piot, M. C. Lin, and P. Stoltz, "Numerical modeling of a table-top tunable Smith- Purcell terahertz free-electron laser operating in the super-radiant regime," Applied Physics Letters, Vol. 96, 151502, 2010.

26. Sharma, G., G. Mishra, and Y. C. Huang, "Wakefield accelerator in a dielectric-plasma liner structure," Nuclear Instrument and Methods in Physics Research A, Vol. 648, 22, 2011.

27. Garate, E. and A. Fisher, "Transverse dimension effects in the dielectric wake-field accelerator," Phys. Fluids B, Vol. 2, No. 1, 179, 1990.

28. Sprangle, P., B. Hafizi, and R. F. Hubbard, "Ionization and pulse lethargy effects in inverse Cerenkov accelerators," Physical Review E, Vol. 55, No. 5, 5964, 1997.