Vol. 46
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-05-01
Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna
By
Progress In Electromagnetics Research Letters, Vol. 46, 19-24, 2014
Abstract
A compact wideband planar microstrip-fed quasi-Yagi antenna is presented. In order to achieve a high gain, the traditional rectangular director in one row is replaced by two rows of directors with an angle, and the overall size of the antenna is unchanged. By adjusting the angle between the two rows of directors, a better performance is achieved. The measurement results show that a broadband impedance about 85.5% (1.84-4.59 GHz) for S11 less than -10 dB and a gain about 4.5-9.3 dBi are obtained. Simulation and measurement results are provided and discussed. The agreements between the simulation and measurement results indicate that the antenna is suitable for wireless communication applications and phased arrays.
Citation
Hao Wang, Shu-Fang Liu, Wen-Tao Li, and Xiao-Wei Shi, "Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna," Progress In Electromagnetics Research Letters, Vol. 46, 19-24, 2014.
doi:10.2528/PIERL14031702
References

1. Kaneda, N., W. Deal, Y. Qian, R. Waterhouse, and T. Itoh, "A broadband planar quasi-Yagi antenna," IEEE Transactions on Antennas and Propagations, Vol. 50, No. 8, 1158-1160, Aug. 2002.
doi:10.1109/TAP.2002.801299

2. Avila-Navarro, E., A. Segarra-Martinez, J. A. Carrasco, and C. Reig, "A low-cost compact uniplanar quasi-Yagi printed antenna," Microwave and Optical Technology Letters, Vol. 50, No. 3, 731-735, Mar. 2008.
doi:10.1002/mop.23197

3. Ta, S. X., H. Choo, and I. Park, "Wideband double-dipole Yagi-UDA antenna fed by a microstrip-slot coplanar stripline transition," Progress In Electromagnetics Research B, Vol. 44, 71-87, 2012.
doi:10.2528/PIERB12080605

4. Sor, J., Y. Qian, and T. Itoh, "Coplanar waveguide fed quasi-Yagi antenna," Electronics Letters, Vol. 36, No. 1, 1-2, Jan. 2000.
doi:10.1049/el:20000132

5. Ding, Y., Y.-C. Jiao, B. Li, and L. Zhang, "Folded triple-frequency quasi-Yagi-type antenna with modified CPW-to-CPS transition," Progress In Electromagnetics Research Letters, Vol. 37, 143-152, 2013.
doi:10.2528/PIERL12120407

6. Ta, S. X., B. Kim, H. Choo, and L. Park, "Wideband quasi-Yagi antenna fed by microstrip-to-slotline transition," Microwave and Optical Technology Letters, Vol. 54, No. 1, 150-153, Jan. 2012.
doi:10.1002/mop.26504

7. Kan, H., R. Waterhouse, A. Abbosh, et al. "Simple broadband planar CPW-fed quasi-Yagi antenna," IEEE Antennas and Wireless Propagtation Letters, Vol. 6, 18-20, 2007.
doi:10.1109/LAWP.2006.890751

8. Han, K., Y. Park, H. Choo, and I. Park, "Broadband CPS-fed Yagi-Uda antenna," Electronics Letters, Vol. 45, No. 24, 1207-1209, Nov. 2009.
doi:10.1049/el.2009.1330

9. Wang, Z., X. L. Liu, Y.-Z. Yin, J. H. Wang, and Z. Li, "A novel design of folded dipole for broadband printed Yagi-Uda antenna," Progress In Electromagnetics Research C, Vol. 46, 23-30, 2014.
doi:10.2528/PIERC13111803

10. Ma, T. G., C. W. Wang, R. C. Hua, and J. W. Tsai, "A modified quasi-Yagi antenna with a new compact microstrip-to-coplanar strip transition using artificial transmission lines," IEEE Transactions on Antennas and Propagations, Vol. 57, No. 8, 2469-2474, Aug. 2009.
doi:10.1109/TAP.2009.2024577

11. Mohammed, J. R., "Design of printed Yagi antenna with additional driven element for WLAN application," Progress In Electromagnetics Research C, Vol. 37, 67-81, Jan. 2013.
doi:10.2528/PIERC12121201

12. Lu, H. D., L. M. Si, and Y. Liu, "Compact planar microstrip-fed quasi-Yagi antenna," Electronics Letters, Vol. 48, No. 3, 140-141, Feb. 2012.
doi:10.1049/el.2011.3458