Vol. 146
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-04-13
A Simple Unidirectional Optical Invisibility Cloak Made of Water
By
Progress In Electromagnetics Research, Vol. 146, 1-5, 2014
Abstract
Previous invisibility cloaks were based on metamaterials, which are difficult for practical realization in visible light spectrum. Here we demonstrate a unidirectional invisibility cloak in visible light spectrum. By using water as the effective material and separated into several regions by glass sheets, a simplest and cheapest invisible device is realized. This device can hide macroscopic objects with large scale and is polarization insensitive. Owing to simple fabrication and easily acquisitive materials, our work can be widely applied in our daily life.
Citation
Bin Zheng, Lian Shen, Zuozhu Liu, Huaping Wang, Xianmin Zhang, and Hongsheng Chen, "A Simple Unidirectional Optical Invisibility Cloak Made of Water," Progress In Electromagnetics Research, Vol. 146, 1-5, 2014.
doi:10.2528/PIER14030805
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

3. Smith, D. R., J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Review E, Vol. 71, 036617, 2005.

4. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Physical Review E, Vol. 72, 016623, 2005.
doi:10.1103/PhysRevE.72.016623

5. Driscoll, T., et al. "Free-space microwave focusing by a negative-index gradient lens," Applied Physics Letters, Vol. 88, 081101, 2006.
doi:10.1063/1.2174088

6. Liu, N., et al. "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, 31-37, 2008.
doi:10.1038/nmat2072

7. Schurig, D., et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

8. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonnics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

9. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Physical Review Letters, Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

10. Liu, R., et al. "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.
doi:10.1126/science.1166949

11. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461

12. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nature Photonics, Vol. 3, 461-463, 2009.
doi:10.1038/nphoton.2009.117

13. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337-339, 2010.
doi:10.1126/science.1186351

14. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisibility cloak for visible light," Physical Review Letters, Vol. 106, 033901, 2011.
doi:10.1103/PhysRevLett.106.033901

15. Chen, X., et al. "Macroscopic invisibility cloaking of visible light," Nature Communications, Vol. 2, 176, 2011.
doi:10.1038/ncomms1176

16. Xi, S., H. Chen, B.-I.Wu, and J. A. Kong, "One-directional perfect cloak created with homogeneous material," IEEE Microwave Wireless Components Letters, Vol. 19, 131-133, 2009.
doi:10.1109/LMWC.2009.2013677

17. Edwards, B., A. Alu, and N. Engheta, "Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials," Physical Review Letters, Vol. 103, 153901, 2009.
doi:10.1103/PhysRevLett.103.153901

18. Xu, S., et al. "Experimental demonstration of a free-space cylindrical cloak without superluminal propagation," Physical Review Letters, Vol. 109, 223903, 2012.
doi:10.1103/PhysRevLett.109.223903

19. Chen, H. and B. Zheng, "Broadband polygonal invisibility cloak for visible light," Scientific Reports, Vol. 2, 255, 2012.

20. Chen, H., et al. "Ray-optics cloaking devices for large objects in incoherent natural light," Nature Communications, Vol. 4, 2652, 2013.

21. Howell, J. C. and J. B. Howell, "Simple, broadband, optical spatial cloaking of very large objects,", 2013, arXiv:1306.0863.

22. Ichikawa, H., M. Oura, and T. Taoda, "Invisibility cloaking based on geometrical optics for visible light," Journal of the European Optical Society --- Rapid Publications, Vol. 8, 13037, 2013.
doi:10.2971/jeos.2013.13037

23. Bashkatov, A. N. and E. A. Genina, "Water refractive index in dependence on temperature and wavelength: A simple approximation," Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, Vol. 5068, 393, 2003.