Vol. 59
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-04-18
Optimization of a Plasmon-Assisted Waveguide Coupler Using FEM and Mmp
By
Progress In Electromagnetics Research B, Vol. 59, 219-229, 2014
Abstract
In this paper, we focus on the problem of optimizing plasmonic structures. A plasmon-assisted waveguide coupler is considered as a test problem, which leads to a five-dimensional optimization problem carried out by an evolution strategy (ES). The optimization results are verified by a comparative analysis between different solvers, i.e., the finite element package CONCEPTs and the multiple multipole program (MMP). We also compared with results obtained using a deterministic optimization algorithm, namely the Nedler-Mead method as implemented in the commercial software package COMSOL Multiphysics. Some issues concerning deterministic versus evolutionary optimization, in particular, in the field of plasmonics have been discussed.
Citation
Mengyu Wang, Aytac Alparslan, Sascha M. Schnepp, and Christian Hafner, "Optimization of a Plasmon-Assisted Waveguide Coupler Using FEM and Mmp," Progress In Electromagnetics Research B, Vol. 59, 219-229, 2014.
doi:10.2528/PIERB14030703
References

1. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, No. 6, 442-453, 2008.
doi:10.1038/nmat2162

2. Baron, A., E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, "Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons," Nano Letters, Vol. 11, No. 10, 4207-4212, 2011.
doi:10.1021/nl202135w

3. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193

4. Esslinger, M., W. Khunsin, N. Talebi, T. Wei, J. DorfmÄuller, R. Vogelgesang, and K. Kern, "Phase engineering of subwavelength unidirectional plasmon launchers," Advanced Optical Materials, Vol. 1, No. 6, 434-437, 2013.
doi:10.1002/adom.201300135

5. Kong, J. A., Electromagnetic Wave Theory, Wiley, New York, et al., 1986.

6. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2012.

7. Komarevskiy, N., V. Shklover, L. Braginsky, C. Hafner, and J. Lawson, "Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry," Optics Express, Vol. 20, No. 13, 14189-14200, 2012.
doi:10.1364/OE.20.014189

8. Mihaljevic, J., J. Niegemann, S. M. Schnepp, and C. Hafner, "On the numerical modeling of sharp metallic tips," Quantum Matter, Vol. 3, No. 4, 344-354, 2014.
doi:10.1166/qm.2014.1133

9. COMSOL Multiphysics, 2014, , http://www.comsol.com/.

10. Hafner, C., Post-modern Electromagnetics: Using Intelligent Maxwell Solvers, Wiley, 1999.

11. Schmidt, K. and P. Kauf, "Computation of the band structure of two-dimensional photonic crystals with hp finite elements," Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 13, 1249-1259, 2009.
doi:10.1016/j.cma.2008.06.009

12. Schmidt, K. and R. Kappeler, "Efficient computation of photonic crystal waveguide modes with dispersive material," Optics Express, Vol. 18, No. 7, 7307-7322, 2010.
doi:10.1364/OE.18.007307

13. Nelder, J. A. and R. Mead, "A simplex method for function minimization," Computer Journal,, Vol. 7, No. 4, 308-313, 1965.
doi:10.1093/comjnl/7.4.308

14. Bonnans, J.-F., J. C. Gilbert, C. Lemarechal, and C. A. Sagastizabal, Numerical Optimization: Theoretical and Practical Aspects, Springer, 2006.

15. Brownlee, J., Clever Algorithms: Nature-inspired Programming Recipes, Jason Brownlee, 2011.

16. Johnson, J. M. and V. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992

17. Beyer, H.-G. and H.-P. Schwefel, "Evolution strategies --- A comprehensive introduction," Natural Computing, Vol. 1, No. 1, 3-52, 2002.

18. Ch. Hafner's Generalized Genetic Program, (GGP), 2011, , http://alphard.ethz.ch/Hafner/ggp/gp.htm.

19. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 1999.

20. Taove, A. and S. C. Hagness, Computational Electrodynamics, Volume 160, Artech House, Boston, 2000.