Vol. 59
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-04-04
Microwave Model of Radiation from the Multilayer ``Ocean-Atmosphere'' System for Remote Sensing Studies of the Polar Regions
By
Progress In Electromagnetics Research B, Vol. 59, 123-133, 2014
Abstract
Microwave model for simulation of radiation from the multilayer system ``sea surface - sea ice - snow cover - atmosphere'' is introduced. In the general case, ice and snow cover is modelled by multilayer medium, where every layer is characterized by its specific physical parameters. Electrodynamical properties of each layer are determined from the original authors' model of the effective permittivity of heterogeneous medium. This model takes into account effects of radiation scattering on irregularities of environment. Measurable physical characteristics of sea ice and snow are used as the model input data. This advantage allows using this model for interpretation of remote sensing images of the ice cover in the Polar Regions. Major attention is drawn to comparison of model calculations with satellite data and visual observations from ships. The collection of SSM/I and SSMIS images from GLOBAL-RT data base, and processed visual observations from ships in Arctic cruises were used. Observations data served as the input parameters for electrodynamical model. Comparison of model results with SSM/I images demonstrated good coincidence at various frequencies.
Citation
Vasiliy V. Tikhonov, Dmitriy A. Boyarskii, Evgene Sharkov, Mikhael Raev, Irina A. Repina, Vladimir Ivanov, Tatyana A. Alexeeva, and Natalia Y. Komarova, "Microwave Model of Radiation from the Multilayer ``Ocean-Atmosphere'' System for Remote Sensing Studies of the Polar Regions," Progress In Electromagnetics Research B, Vol. 59, 123-133, 2014.
doi:10.2528/PIERB14021706
References

1. Aagaard, K. and E. C. Carmack, "The role of sea ice and other fresh water in the arctic circulation," J. Geophys. Res., Vol. 94, No. C10, 14485-14498, 1989.
doi:10.1029/JC094iC10p14485

2. Barry, R. G., M. C. Serreze, J. A. Maslanik, and R. H. Preller, "The Arctic sea ice-climate system: Observations and modeling," Rev. Geophys., Vol. 31, No. 4, 397-422, 1993, Doi: 10.1029/93RG01998.
doi:10.1029/93RG01998

3. Vavrus, S. and S. P. Harrison, "The impact of sea-ice dynamics on the Arctic climate system," Climate Dyn., Vol. 20, No. 7-8, 741-757, 2003, Doi: 10.1007/s00382-003-0309-5.

4. Liu, J., J. A. Curry, and D. G. Martinson, "Interpretation of recent Antarctic sea ice variability," Geophys. Res. Lett., Vol. 31, No. 2, L02205, 2004, Doi: 10.1029/2003GL018732.
doi:10.1029/2003GL018732

5. Microwave Remote Sensing of Sea Ice, F. D. Carsey, Ed., American Geophysical Union, Washington , 1992.

6. Massom, R. and D. Lubin, Polar Remote Sensing. Volume II: Ice Sheets, Springer-Praxis Publishing, Chichester, 2006.

7. Comiso, J., "Polar oceans from space," Atmospheric and Oceanographic Sciences Library, Springer, New York, 2009.

8. Gareth Rees, W., Remote Sensing of Snow and Ice, Taylor & Francis Group, Boca Raton, 2006.

9. Cavalieri, D. J., K. M. St. Germain, and C. T. Swift, "Reduction of weather effects in the calculation of sea ice concentration with the DMSP SSM/I," Journal of Glaciology, Vol. 41, 455-464, 1995.

10. Comiso, J. C. and R.Kwok, "Surface and radiative characteristics of the summer Arctic sea cover from multisensor satellite observations," J. Geophys. Res., Vol. 101, No. C12, 28397-28416, 1996.
doi:10.1029/96JC02816

11. Fetterer, F. and N. Untersteiner, "Observations of melt ponds on Arctic sea ice," J. Geophys. Res. --- Oceans, Vol. 103, No. C11, 24821-24835, 1998.
doi:10.1029/98JC02034

12. Meier, W. N., "Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas," IEE Trans. Geosci. Rem. Sens., Vol. 43, No. 6, 1324-1337, 2005.
doi:10.1109/TGRS.2005.846151

13. Andersen, S., R. Tonboe, L. Kaleschke, G. Heygster, and L. T. Pedersen, "Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice," J. Geophys. Res., Vol. 112, No. C08004, 2007, Doi: 10.1029/2006JC003543.

14. Sharkov, E. A., Passive Microwave Remote Sensing of the Earth: Physical Foundations, Springer/PRAXIS, Berlin, Heidelberg, London, New York etc., 2003.

15. Tikhonov, V. V., D. A. Boyarskii, L. M. Kitaev, M. D. Raev, and E. A. Cherenkova, "Regional features of microwave radiation and snow cover interaction on the example of the north of the European part of Russia," 10th Specialist Meeting on Microwave Radiometry and Remote Sensing of Environment, 1-4, Firenze, Italy, Mar. 11-14, 2008.

16. Boyarskii, D. A. and V. V. Tikhonov, "Microwave effective permittivity model of media of dielectric particles and applications to dry and wet snow," Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS' 94), Vol. 4, 2065-2067, Pasadena, California, USA, Aug. 8-12, 1994.

17. Tikhonov, V. V., "Model of complex dielectric constant of wet and frozen soil in the 1-40 GHz frequency range," Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS' 94), Vol. 3, 1576-1578, Pasadena, California, USA, Aug. 8-12, 1994.

18. Boyarskii, D. A., V. V. Tikhonov, N. I. Kleeorin, and V. G. Mirovskii, "Inclusion of scattering losses in the models of the effective permittivity of dielectric mixtures and applications to wet snow," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 11, 1395-1410, 1994.

19. Tikhonov, V. V., "Dielectric and emissions models for salt water-soil mixture," Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS' 95), Vol. 1, 9-11, Fierenze, Italy, Jul. 10-14, 1995.

20. Tikhonov, V. V., "Dielectric model of bound water in wet soils for microwave remote sensing," Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS' 97), Vol. 1, 1108-1110, Singapore, Aug. 4-8, 1997.

21. Boyarskii, D. A., V. V. Tikhonov, and N. Y. Komarova, "Model of dielectric constant of bound water in soil for applications of microwave remote sensing," Progress In Electromagnetics Research, Vol. 35, 251-270, 2001.

22. Boyarskii, D. A., V. V. Tikhonov, G. M.Chulkova, and A. R. Makavetskas, "Microwave transmission coe±cient of the heterogeneous media," Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS' 03), Vol. 7, 4201-4203, Toulouse, France, Jul. 21-25, 2003.

23. Sea Ice, D. N. Thomas and G. S. Dieckmann (eds.), Wiley-Blackwell, Chichester, 2010.

24. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, 1983.

25. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.

26. Comiso, J. C., T. C. Grenfell, D. L. Bell, M. A. Lange, and S. F. Ackley, "Passive microwave in situ observations of winter weddell sea ice," J. Geophys. Res., Vol. 94, No. C8, 10891-10905, 1989.
doi:10.1029/JC094iC08p10891

27. Radiative Transfer Models for Microwave Radiometry, C. Matzler (ed.), Office for Official Publications of the European Communities, Luxembourg, 2000.

28. Tikhonov, V. V., D. A. Boyarskii, I. A. Repina, M. D. Raev, E. A. Sharkov, and T. A. Alexeeva, "Snow cover effect on brightness temperature of Arctic ice fields based on SSM/I data," PIERS Proceedings, 514-518, Stockholm, Sweden, Aug. 12-15, 2013.

29. Handbook of Snow, D. M. Gray and D. H. Male, Eds., Pergamon Press, Toronto, 1986.

30. Encyclopedia of Snow, Ice and Glaciers, V. P. Singh, P. Singh, and U. K. Haritashya (eds.), Springer, Dordrecht, 2011.

31. Cuffey, K. M. and W. S. B. Paterson, The Physics of Glaciers, Elsevier, Burlington, 2010.

32. Van de Hulst, H. C., Light Scattering by Small Particles, John Wiley & Sons, New York, 1957.

33. Hufford, G., "A model for the complex permittivity of ice at frequencies below 1 THz," Intern. J. Infrared and Millimeter Waves, Vol. 12, No. 7, 677-682, 1991.
doi:10.1007/BF01008898

34. Colbeck, S. C., "Snow metamorphism and classification," Seasonal Snowcovers: Physics, Chemistry, Hydrology, NATO ASI Series, Vol. 211, 1-5, 1987.
doi:10.1007/978-94-009-3947-9_1

35. Ray, P. S., "Broadband complex refractive indices of ice and water," J. Applied Optics, Vol. 11, No. 8, 1836-1844, 1972.
doi:10.1364/AO.11.001836

36. Comiso, J. C., "SSM/I sea ice concentrations using the bootstrap algorithm,", NASA Reference Publication 1380, Goddard Space Flight Center, Greenbelt, Maryland, 1995.

37. Tseitlin, N. M., Antennas Technics and Radioastronomy, Sov. Radio, Moscow, 1966 (in Russian).

38. Boyarskii, D. A. and V. V. Tikhonov, "The in°uence of stratigraphy on microwave radiation from natural snow cover," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 9, 1265-1285, 2000.
doi:10.1163/156939300X01201

39. Ulaby, F. T., R. K. Moor, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Volume I, Addison-Wesley Publishing Company, Reading, 1981.

40. Born, V. and E. Wolf, Principles of Optics, Pergamon, Oxford, 1964.

41. Choudhury, B. J., T. J. Schmugge, A. Chang, and R. W. Newton, "Effect of surface roughness on the microwave emission from soils," J. Geophys. Res., Vol. 84, No. C9, 5699-5706, 1979.
doi:10.1029/JC084iC09p05699

42. Polyakov, I. V., et al. "Observational program tracks Arctic ocean transition to a warmer state," Eos, Transactions American Geophysical Union, Vol. 88, No. 40, 398-399, 2007.
doi:10.1029/2007EO400002