Vol. 38
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-06
Improvement of Iterative Physical Optics Using the Physical Optics Shadow Radiation
By
Progress In Electromagnetics Research M, Vol. 38, 1-13, 2014
Abstract
The prediction of Radar Cross Section (RCS) of complex targets which present shadowing effects is an interesting challenge. This paper deals with the problem of shadowing effects in the computation of electromagnetic scattering by a complex target using Iterative Physical Optics (IPO). The original IPO is limited to cavities applications, but a generalized IPO can be applied to arbitrary geometries. This paper proposes a comparison between the classical PO approach and a physical approach based on shadow radiation (around forward direction) with PO approximation for the consideration of shadowing effects in generalized IPO. Based on the integral equations, a rigorous demonstration of this physical shadowing is provided. Then simulation results illustrate the interest of using physical shadowing both from the transmitter and towards the receiver, compared to the classical approach.
Citation
Antoine Thomet, Gildas Kubicke, Christophe Bourlier, and Philippe Pouliguen, "Improvement of Iterative Physical Optics Using the Physical Optics Shadow Radiation," Progress In Electromagnetics Research M, Vol. 38, 1-13, 2014.
doi:10.2528/PIERM14021202
References

1. Obelleiro-Basteiro, F., J. L. Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 43, No. 4, 356-361, 1995.
doi:10.1109/8.376032

2. Hemon, R., P. Pouliguen, H. He, J. Saillard, and J. F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
doi:10.2528/PIER07110803

3. Burkholder, R. J. and T. Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 793-799, 2005.
doi:10.1109/TAP.2004.841317

4. Burkholder, R. J., C. Tokgoz, C. J. Reddy, W. O. Coburn, and P. H. Pathak, "Iterative physical optics: Its not just for cavities anymore [EM wave propagation]," IEEE Trans. Antennas Propagat., Vol. 1A, 18-21, 2005.

5. Choi, S. H., D. W. Seo, and N. H. Myung, "Scattering analysis of open-ended cavity with inner object," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1689-1702, 2007.

6. Obelleiro, F., J. Campos Nio, J. L. Rodriguez, and A. G. Pino, "A segmented approach for computing the electromagnetic scattering of large and deep cavities," Progress In Electromagnetics Research, Vol. 19, 129-145, 1998.
doi:10.2528/PIER97100700

7. Burkholder, R. J., C. Tokgoz, C. J. Reddy, and W. O. Coburn, "Iterative physical optics for radar scattering predictions," Applied Computational Electromagnetics Society (ACES), Vol. 24, No. 2, 2009.

8. Kubicke, G., Y. A. Yahia, C. Bourlier, N. Pinel, and P. Pouliguen, "Bridging the gap between the Babinet principle and the physical optics approximation: Scalar problem," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4725-4732, 2011.
doi:10.1109/TAP.2011.2165498

9. Kubicke, G., C. Bourlier, M. Delahaye, C. Corbel, N. Pinel, and P. Pouliguen, "Bridging the gap between the Babinet principle and the Physical Optics approximation: Vectorial Problem," Radio Science, Vol. 48, No. 5, 573-581, 2013.
doi:10.1002/rds.20059

10. Ufimtsev, P. Y., "Blackbodies and shadow radiation," Soviet Journal of Communications, Technology and Electronics, Vol. 35, No. 5, 108-116, Translation from Russian by Scripta Technica, Inc., 1990.

11. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley and Sons, New Jersey, 2007.
doi:10.1002/0470109017

12. Siegel, K. M., Bistatic radars and forward scattering, 286-290, Aero Electronics Nat. Conf. Proc., Dayton, Ohio, 1958.

13. Glaser, J. I., "Bistatic RCS of complex objects near forward scatter," IEEE Trans. Antennas Propagat., Vol. 21, No. 1, 70-78, 1985.

14. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

15. Poggio, A. J. and E. K. Miller, Integral Equations Solutions of Three-dimensional Scattering Problems, Computer Techniques for Electromagnetics, R. Mittra, Pergamon Press, 1973.