Vol. 59
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-04-09
A Comparative Study of Material Leucaena Leucocephala Stem Wood Plastic Composite (Wpc) Substrate with Fr4 Substrate Throughout Single Patch Antenna Design
By
Progress In Electromagnetics Research B, Vol. 59, 151-166, 2014
Abstract
The fabrication of single square patch antenna for proposed Leucaena Leucocephala (``Petai Belalang'') Wood Plastic Composite (WPC) substrate board (PB Substrate board) and FR4 substrate board is presented in this paper. The experiment objective is to measure the performance of an antenna fabricated on the FR4 and PB substrate (proposed substrate) by comparing the performance in terms of material's dielectric constant and electron mobility and antennas' loss tangent, return loss (S11), radiation pattern and practical antenna transmitting performance. The new substrate compositions of Leucaena Leucocephala stem and polypropylene (PP) are 30% and 70% consecutively. The result for 150 μm (sample B) indicates stability on most dielectric constant (εr =3.02), loss tangent (Tanδ=0.029) and electron mobility (5.31x103 cm2/Vs), with the consistency of antenna result, between simulation and measurement. All results obtained will be analyzed and displayed in the form of data and graphs.
Citation
AHMAD AZLAN AB AZIZ, Muhammad Kamal Badrun, Mohd Tarmizi Ali, Zaiki Awang, Zakiah Bt. Md Saad, and Aziati Husna Awang, "A Comparative Study of Material Leucaena Leucocephala Stem Wood Plastic Composite (Wpc) Substrate with Fr4 Substrate Throughout Single Patch Antenna Design," Progress In Electromagnetics Research B, Vol. 59, 151-166, 2014.
doi:10.2528/PIERB14020203
References

1. Joseph, K., B. James, S. Thomas, and L. H. de Carvalho, "A review on sisal fiber reinforced polymer," Rev. Bras. Eng. Agricola e Ambient, Vol. 3, No. 083, 367-379, 1999.

2. Ozmen, N., N. S. C» etin, F. Mengelo·glu, E. Birinci, and K. Karakus, "Effect of wood acetylation with vinyl acetate and acetic anhydride on the properties of wood-plastic composites," PEER-REVIEWED ARTIC. Bioresour., Vol. 8, No. 1, 753-767, 2013.

3. Facca, A. G., M. T. Kortschot, and N. Yan, "Predicting the elastic modulus of natural fibre reinforced thermoplastics," Compos. Part A: Appl. Sci. Manuf., Vol. 37, No. 10, 1660-1671, Oct. 2006.
doi:10.1016/j.compositesa.2005.10.006

4. Vol, E. S., "Review of the history, properties and application of plant fibers," African J. Sci. Technol., Vol. 7, No. 2, 120-133, 2006.

5. Bowyer, J., K. Fernholz, J. Howe, and S. Bratkovich, "Wood-plastic composite lumber vs. wood decking," Technical Report, retrieved (http://dovetailinc.org/files/dovetailplasticdeck0710.pdf), 2010.

6. Mishra, P. and P. Sharma, "Green marketing in India: Emerging," J. Eng. Sci. Manag. Educ., Vol. 3, 9-14, 2010.

7. Hansen, E., Market and Innovation Considerations in Development of Natural Wood Fiber Composites, Oregon State University, USA, 2008.

8. Chowdhury, D., "Study on mechanical behaviour of wood dust filled polymer composites,", National Institute of Technology, India, 2010.

9. Ammann, M., S. V. S. Nair, M. J. Ammann, and S. Member, "Reconfigurable antenna with elevation and azimuth beam switching recon¯gurable antenna with elevation and azimuth beam switching," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 367-370, 2010.

10. Iddi, H. U., M. R. Kamarudin, T. A. Rahman, and R. Dewan, "Reconfigurable monopole antenna for WLAN/WiMAX applications," PIERS Proceedings, 1048-1051, Taipei, March 25-28, 2013.

11. Piazza, D., S. Member, N. J. Kirsch, A. Forenza, R. W. Heath, S. Member, and K. R. Dandekar, "Design and evaluation of a reconfigurable antenna array for MIMO systems," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 869-881, 2008.
doi:10.1109/TAP.2008.916908

12. Romano, N., G. Prisco, and F. Soldovieri, "Design of a reconfigurable antenna for ground penetrating radar applications," Progress In Electromagnetics Research, Vol. 94, 1-18, 2009.
doi:10.2528/PIER09040802

13. Korkontzila, E. G., D. B. Papafilippou, and D. P. Chrissoulidis, "Miniaturization of microstrip patch antenna for wireless applications by use of multilayered electromagnetic band gap substrate," 2006 First Eur. Conf. Antennas Propag., Vol. 1, 1-6, Nov. 2006.

14. Anita, R. and M. V. C. Kumar, "Analysis of triangular microstrip patch antenna for different substrate materials," Int. J. Res. Eng. Adv. Technol., Vol. 1, No. 5, 4-7, 2013.

15. Tekin, I. and M. Knox, "Reconfidiurable dual band microstrip patch antenna for software defined radio applications," IEEE Antennas Wirel. Propag. Lett., Vol. 3, 4-7, 2010.

16. Lin, C.-C., P. Lin, and R. W. Ziolkowski, "Single, dual and tri-band-notched ultrawideband (UWB) antennas using capacitively loaded loop (CLL) resonators," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 102-109, 2012.
doi:10.1109/TAP.2011.2167947

17. Ab Aziz, A. A., M. K. M. Amin, M. T. Ali, and M. K. M. Salleh, "Offcentered feed array (OCFA) antenna for WiMAX and WLAN applications," 2012 IEEE Asia-Pacific Conf. Appl. Electromagn., 302-307, Dec. 2012.
doi:10.1109/APACE.2012.6457681

18. Azlan, A. A., M. T. Ali, and M. K. M. Salleh, "A design of off centered feed array (OCFA) antenna for ISM band," 2012 IEEE Symp. Wirel. Technol. Appl., Vol. 1, 233-238, Sep. 2012.
doi:10.1109/ISWTA.2012.6373851

19. Al-Mefarrej, H. A., M. A. Abdel-Aal, R. A. Nasser, and N. D. Shetta, "Impact of initial tree spacing and stem height level on chemical composition of Leucaena Leucocephala tress grown in Riyadh region," World Appl. Sci. J., Vol. 12, No. 7, 2011.

20. Basiji, F., V. Safdari, A. Nourbakhsh, and S. Pilla, "The effects of fiber length and fiber loading on the mechanical properties of wood-plastic (polypropylene) composites," Turk. J. Agric., Vol. 34, No. 1, 191-196, 2010.

21. Yamacli, S., C. Ozdemir, and A. Akdagli, "A method for determining the dielectric constant of microwave PCB substrates," nternational Journal of Infrared and Millimeter Waves, Vol. 29, No. 2, 207-216, 2008.
doi:10.1007/s10762-007-9317-6

22. Khan, A. and R. Nema, "Analysis of fifie different dielectric substrates on microstrip patch antenna," Int. J. Comput. Appl., Vol. 55, No. 18, 6-12, 2012.

23. Cho, K., F. Li, and J. Choi, "Crystallization and melting behavior of polypropylene and maleated polypropylene blends," Elsevier's Polymer, Vol. 40, No. 7, 1719-1729, Mar. 1999.

24. Ashrafi, M., A. Vaziri, and H. Nayeb-Hashemi, "Effect of processing variables and fiber reinforcement on the mechanical properties of wood plastic composites," J. Reinf. Plast. Compos., Vol. 30, No. 23, 1939-1945, Dec. 2011.
doi:10.1177/0731684411431120

25. Molaee, S. M. and M. Golzar, "Experimental and theoretical investigation of mechanical properties of biodegradable wood-plastic composite in the extrusion process," J. Soc. Issues Humanit., Vol. 1, No. 6, 175-177, 2013.

26. Rahman, K.-S., M. N. Islam, M. M. Rahman, M. O. Hannan, R. Dungani, and H. A. Khalil, "Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): Physical and mechanical properties," SpringerPlus, Vol. 2, 629, Jan. 2013.
doi:10.1186/2193-1801-2-629

27. Venkatesh, M. S. and B. Engineering, "An overview of dielectric properties measuring techniques," Canadian Biosystems Engineering, 47, 2005.

28. Wee, F. H., P. J. Soh, A. H. Suhaizal, H. Nornikman, and A. A. Ezanuddin, "Free space measurement technique on dielectric properties of agricultural residues at microwave frequencies," 2009 SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf., Vol. 1, 183-187, Nov. 2009.

29. Jayanthy, T. and P. E. Sankaranarayanan, "Measurement of dry rubber content in latex using microwave technique," Meas. Sci. Rev., Vol. 5, No. 3, 50-54, Sathyabama Institute of Science & Technology, Deemed University, 2005.

30. Gagnon, N., J. Shaker, L. Roy, A. Petosa, and P. Berini, "Low-cost free-space measurement of dielectric constant at Ka band," IEE Proc. --- Microw. Antennas Propag., Vol. 151, No. 3, 271-276, 2004.
doi:10.1049/ip-map:20040264

31. Engelder, D., "Dielectric materials," RF & Microwave Measurements Symposium and Exhibition, 1990.

32. He, Z., G. F. Knoll, and D. K. Wehe, "Direct measurement of product of the electron mobility and mean free drift time of CdZnTe semiconductors using position sensitive single polarity charge sensing detectors," J. Appl. Phys., Vol. 84, No. 10, 5566, 1998.
doi:10.1063/1.368601

33. Mu, H., D. Klotzkin, and S. Member, "Measurement of electron mobility in Alq 3 from optical modulation measurements in multilayer organic light-emitting diodes," J. Disp. Technol., Vol. 2, No. 4, 341-346, 2006.
doi:10.1109/JDT.2006.885150

34. Boucher, Y. A., F. Zhang, W. Kaye, and Z. He, "New measurement technique for the product of the electron mobility and mean free drift time for pixelated semiconductor detectors," Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip., Vol. 671, 1-5, Apr. 2012.
doi:10.1016/j.nima.2011.12.008

35. Ahmed, O. M. H., A. R. Sebak, and T. A. Denidni, "Size reduction and bandwidth enhancement of a UWB hybrid dielectric resonator antenna for short-range wireless communications," Progress In Electromagnetics Research Letters, Vol. 19, 19-30, 2010.

36. Fang, Q., L. Song, M. Jin, Y. Han, and X. Qiao, "Wideband dual-linear polarized stacked patch antenna with asymmery feeding," TELKOMNIKA Indones. J. Electr. Eng., Vol. 12, No. 1, 106-112, 2014.

37. Cakir, G. and L. Sevgi, "Design, simulation and tests of a low-cost microstrip patch antenna arrays for the wireless," Turk J. Elec. Engin., Vol. 13, No. 1, 93-103, 2005.

38. Przesmycki, R., M. Wnuk, L. Nowosielski, K. Piwowarczyk, and M. Bugaj, "Antenna gain measurement by comparative method using an anechoic chamber," PIERS Proceedings, 1424-1428, Moscow, Russia, August 19-23, 2012.

39. Murase, M., Y. Tanaka, and H. Arai, "Propagation and antenna measurements using antenna switching and random field measurements," IEEE Trans. Veh. Technol., Vol. 43, No. 3, 537-541, 1994.
doi:10.1109/25.312793

40. Ismail, N., "Measurements of radiowave signal strength and path loss propagation using egli model,", 1-16, Technical Report 1{16, retreved (http://www.pjk.edu.my/research/Radiowave%20Signal%20Strenght%20and%20Path%20Loss%20Propagation.pdf).

41. Jais, M. I., M. F. B. Jamlos, M. Jusoh, T. Sabapathy, M. R. Kamarudin, R. B. Ahmad, A. A. A.-H. Azremi, E. I. Bin Azmi, P. J. Soh, G. A. E. Vandenbosch, and N. L. K. Ishak, "A novel 2.45 GHz switchable beam textile antenna (SBTA) for outdoor wireless body area network (WBAN) applications," Progress In Electromagnetics Research, Vol. 138, 613-627, 2013.
doi:10.2528/PIER13022610

42. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801

43. Bridges, W. B., M. B. Klein, and E. Schweig, "Measurement of the dielectric constant and loss tangent of thallium mixed halide crystals KRS-5 and KRS-6 at 95 GHz," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 3, 286-292, 1982.
doi:10.1109/TMTT.1982.1131063

44. Ehrlich, P., "Dielectric properties of te°on from room temperature to 314-degrees-C and from frequencies of 10_2 to 10_5 c/s," J. Res. Natl. Bur. Stand., Vol. 51, No. 4, 185, Oct. 1953.
doi:10.6028/jres.051.024

45. Eccosorb "Dielectric materials chart --- Eccostock,", Technical Reports AFML-TR-72-39 and 74-250, [Online], available: http://www.eccosorb.com/Collateral/Documents/English-US/dielectric-chart.pdf.

46. Sharma, S., A. Kumar, and D. Kaur, "Cavity perturbation measurement of complex permittivity of dielctric material at microwave frequencies," International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS), 116-120, ISSN: 2279-0055, 2013.

47. Abdullah, O. G., G. M. Jamal, and D. A. Tahir, "Dielectric properties of polyester reinforced with carbon black particles," International Conference on Applied Physics and Mathematics, ICAPM, 1-5, 2011.