Vol. 59
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-03-07
Multilayered Superlenses Containing Csbr OR Active Medium for Subwavelength Photolithography
By
Progress In Electromagnetics Research B, Vol. 59, 1-18, 2014
Abstract
The characteristics of periodic multilayered near-field superlenses are analyzed and optimized, using the dispersion relation derived from an effective medium theory and the transfer function in the spectral domain. The k'z-k''x and kz-kx contours are used to explain and predict the spectral width, amplitude and phase of the transfer function. Superlenses containing CsBr or active layers are proposed to reduce image distortion or to compensate for the propagation loss, respectively. The parameters of the superlenses can be optimized by simulations to resolve half-pitch features down to λ/36 using CsBr layers, and λ/20 using active layers.
Citation
Li-Hao Yeh, and Jean-Fu Kiang, "Multilayered Superlenses Containing Csbr OR Active Medium for Subwavelength Photolithography," Progress In Electromagnetics Research B, Vol. 59, 1-18, 2014.
doi:10.2528/PIERB13123101
References

1. Engheta, N. and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, IEEE Press, 2006.

2. Pendry, J. B., "Negative refraction makes perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Shi, Z., V. Kochergin, and F. Wang, "193nm superlens imaging structure for 20nm lithography node," Opt. Exp., Vol. 17, No. 14, 11309-11314, 2009.
doi:10.1364/OE.17.011309

4. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759

5. Ramakrishna, S. A. and J. B. Pendry, "Imaging the near field," J. Mod. Opt., Vol. 50, No. 9, 1419-1430, 2003.
doi:10.1080/09500340308235215

6. Li, G., J. Li, H. L. Tam, C. T. Chan, and K. W. Cheah, "Sub-wavelength imaging from multilayer superlens," Int. Nanoelectron. Conf., 1309-1310, 2010.

7. Melville, D. O. S. and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B, Vol. 394, No. 2, 197-202, 2007.
doi:10.1016/j.physb.2006.12.048

8. Wood, B. and J. B. Pendry, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, 2006.
doi:10.1103/PhysRevB.74.115116

9. Xu, T., Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, "Sub-diffraction-limited interference photolithography with metamaterials," Opt. Exp., Vol. 16, No. 18, 13579-13584, 2008.
doi:10.1364/OE.16.013579

10. Wang, C., Y. Zhao, D. Gan, C. Du, and X. Luo, "Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films," Opt. Exp., Vol. 16, No. 6, 4217-4227, 2008.
doi:10.1364/OE.16.004217

11. Scalora, M., G. D'Aguanno, N. Mattiucci, and M. J. Bloemer, "Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks," Opt. Exp., Vol. 15, No. 2, 508-523, 2007.
doi:10.1364/OE.15.000508

12. Moore, C. P., "Optical superlenses: Quality and fidelity in silver-dielectric near-field imaging systems,", University of Canterbury, May 24, 2011.

13. Xie, Z., W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, "Plasmonic nanolithography: A review," Plasmonics, Vol. 6, 565-580, 2011.
doi:10.1007/s11468-011-9237-0

14. Liu, Z., S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett., Vol. 7, No. 2, 403-408, 2006.
doi:10.1021/nl062635n

15. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Design, fabrication and characterization of a far-field superlens," Solid State Commun., Vol. 146, 202-207, 2008.
doi:10.1016/j.ssc.2007.10.043

16. Cao, P. F., X. P. Zhang, L. Cheng, and Q. Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801

17. Smolyaninov, I. I., Y.-J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science, Vol. 315, No. 5819, 1699-1701, 2007.
doi:10.1126/science.1138746

18. Cheng, B. H., Y. Z. Ho, Y.-C. Lan, and D. P. Tsai, "Optical hybrid-superlens hyperlens for superresolution imaging," IEEE J. Sel. Top. Quantum Electron., Vol. 19, No. 3, 2013.

19. Kiang, J.-F., S. M. Ali, and J. A. Kong, "Integral equation solution to the guidance and leakage properties of coupled dielectric strip waveguides," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 2, 193-203, Feb. 1990.
doi:10.1109/22.46430

20. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1980.

21. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

22. Mitra, S. K. and S. Chakraborty, Micro°uidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications, CRC Press, 2012.

23. Rodney, W. S. and R. J. Spindler, "Refractive index of cesium bromide for ultraviolet, visible, and infrared wavelengths," J. Res. Bur. Stand., Vol. 51, No. 3, 123-126, 1953.
doi:10.6028/jres.051.015

24. Buzulutskovl, A., E. Shefer, A. Breskin, R. Chechik, and M. Prager, "The protection of K-Cs-Sb photocathodes with CsBr films," Nuclear Instru. Methods Phys. Res. A, Vol. 400, 173-176, 1997.
doi:10.1016/S0168-9002(97)00990-X

25. Wasserman, H. J. and J. S. Vermaak, "On the determination of a lattice contraction in very small silver particles," Surface Science, Vol. 22, 164-172, 1970.
doi:10.1016/0039-6028(70)90031-2

26. Maldonado, J. R., P. Pianetta, D. H. Dowell, J. Smedley, and P. Kneisel, "Performance of a CsBr coated Nb photocathode at room temperature," J. Appl. Phys., Vol. 107, 013106, 2010.
doi:10.1063/1.3276222

27. Fonoberov, V. A. and A. A. Balandin, "ZnO quantum dots: Physical properties and optoelectronic applications," J. Nanoelectron. Optoelectron., Vol. 1, 19-38, 2006.
doi:10.1166/jno.2006.002

28. Peng, Y.-Y., T.-E. Hsieh, and C.-H. Hsu, "Dielectric confinement effect in ZnO quantum dots embedded in amorphous SiO2 matrix," J. Phys. D: Appl. Phys., Vol. 40, 6071-6075, 2007.
doi:10.1088/0022-3727/40/19/046

29. Holmstrom, P., L. Thylen, and A. Bratkovsky, "Dielectric function of quantum dots in the strong confinement regime," J. Appl. Phys., Vol. 107, No. 6, 064307, 2010.
doi:10.1063/1.3309343

30. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE, London, 1999.
doi:10.1049/PBEW047E

31. Vexler, M. I., S. E. Tyaginov, and A. F. Shulekin, "Determination of the hole effective mass in thin silicon dioxide film by means of an analysis of characteristics of a MOS tunnel emitter transistor," J. Phys.: Condens. Matter, Vol. 17, 8057-8068, 2005.
doi:10.1088/0953-8984/17/50/023

32. You, J. B., X. W. Zhang, H. P. Song, J. Ying, Y. Guo, A. L. Yang, Z. G. Yin, N. F. Chen, and Q. S. Zhu, "Energy band alignment of SiO2/ZnO interface determined by X-ray photoelectron spectroscopy," J. Appl. Phys., Vol. 106, 043709, 2009.
doi:10.1063/1.3204028

33. Ellmer, K., A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells, Springer, 2008.
doi:10.1007/978-3-540-73612-7

34. Alim, K. A., V. A. Fonoberov, and A. A. Balandin, "Interpretation of the phonon frequency shifts in ZnO quantum dots," Matter. Res. Soc. Symp.,, Vol. 872, J13.21, 2005.

35. Pellegrini, G., G. Mattei, and P. Mazzoldi, "Finite depth square well model: Applicability and limitations," J. Appl. Phys., Vol. 97, 073706, 2005.
doi:10.1063/1.1868875

36. Stokes, E. D., F. B. Dunning, R. F. Stebbings, G. K. Walters, and . D. Rundel, "A high efficiency dye laser tunable from UV to the IR," Opt. Commun., Vol. 5, No. 4, 267-270, 1972.
doi:10.1016/0030-4018(72)90094-6

37. Duarte, F. J., "Tunable organic dye lasers: Physics and technology of high-performance liquid and solid-state narrow-linewidth oscillators," Prog. Quantum Electron., Vol. 36, 29-50, 2012.
doi:10.1016/j.pquantelec.2012.03.002

38. Kasarova, S. N., N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, "Analysis of the dispersion of optical plastic materials," Opt. Mater., Vol. 29, 1481-1490, 2007.
doi:10.1016/j.optmat.2006.07.010

39. Melpignano, P., C. Cioarec, R. Clergereaux, N. Gherardi, C. Villeneuve, and L. Datas, "E-beam deposited ultra-smooth silver thin film on glass with different nucleation layers: An optimization study for OLED micro-cavity application," Organic Electron., Vol. 11, 1111-1119, 2010.
doi:10.1016/j.orgel.2010.03.022

40. Tsai, T.-C. and D. Staack, "Low-temperature polymer deposition in ambient air using a floating-electrode dielectric barrier discharge jet," Plasma Process. Polym., Vol. 8, 523-534, 2011.
doi:10.1002/ppap.201000171