Vol. 34
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-01-30
Flat Far Field Lenses and Reflectors
By
Progress In Electromagnetics Research M, Vol. 34, 163-170, 2014
Abstract
We present a flat lens design that provides focusing with no aberration. By profiling the refractive index of the lens to generate a spherical wavefront at the exit side of the lens, the transmitted fields converge at a specified focal point. The focusing is achieved using primarily the dispersion phenomenon. We show through numerical examples that focusing without aberration can be achieved at a specific frequency and that focusing is possible over a narrow range of frequencies providing that the dispersion is minimal. Additionally, we show that the same principle used to design the lens can be used to design flat reflectors with a focal point focusing.
Citation
Miguel Ruphuy, Zhao Ren, and Omar M. Ramahi, "Flat Far Field Lenses and Reflectors," Progress In Electromagnetics Research M, Vol. 34, 163-170, 2014.
doi:10.2528/PIERM13122607
References

1. Zghal, M., H.-E. Bouali, Z. B. Lakhdar, and H. Hamam, "The first steps for learning optics: Ibn Sahls, Al-Haythams and Youngs works on refraction as typical examples," The Education and Training in Optics and Photonics Conference (ETOP) 2007, Ottawa, Ontario, Canada, 2007.

2. King, H. C., The History of the Telescope, Courier Dover Publications, 2003.

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.

4. Williams, J. M., "Some problems with negative refraction," Phys. Rev. Lett., Vol. 87, 249703-1, 2001.

5. Pendry, J., "Pendry replies to Williams," Phys. Rev. Lett.., Vol. 87, 249704-1, 2001.

6. Pendry, J., "Pendry's reply to Hooft," Phys. Rev. Lett., Vol. 87, 249702-1, 2001.

7. Walser, R. M., A. P. Valanju, and P. M. Valanju, "Comment on extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 87, 119701-1, 2001.

8. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 18, 2006.

9. Liu, Z., S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Nano. Lett., Vol. 7, 403-408, 2007.

10. Yang, R., W. Tang, Y. Hao, and I. Youngs, "A coordinate transformation-based broadband flat lens via microstrip array," IEEE Antennas Wireless Propagat. Lett., Vol. 10, 99-102, 2011.

11. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.

12. Kwon, D. H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys., Vol. 10, 115023, 2008.

13. Sussman, M., "Elementary diffraction theory of zone plates," Am. J. Phys., Vol. 28, 394-398, 1960.

14. Wood, R. W., Physical Optics, The Macmillan Company, 1905.

15. Sands, P. J., "Third-order aberrations of inhomogeneous lenses," J. Opt. Soc. Am., Vol. 60, 1436-1443, 1970.

16. Sands, P. J., "Inhomogeneous lenses, III. Paraxial optics," J. Opt. Soc. Am., Vol. 61, 879-885, 1971.

17. Bass, M. Ed., Handbook of Optics, 3rd Ed., The McGraw-Hill Companies, 2010.

18. Ilyas, S. and M. Gal, "Gradient refractive index planar microlens in Si using porous silicon," Appl. Phys. Lett., Vol. 89, 211123-3, 2006.

19. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin °at lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Letters, Vol. 12, 4932-4936, 2012.

20. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.

21. Chen, X., L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nature Communications, Vol. 3, Article No. 1198, 2012, doi:10.1038/ncomms2207.

22. Liu, R., Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, "Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials," Opt. Express, Vol. 17, 21030-21041, 2009.

23. Ma, H. F., X. Chen, H. S. Xu, X. M. Yan, W. X. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,", Vol. 95, 094107, 2009.

24. Chen, X., H. F. Ma, X. Y. Zou, W. X. Jiang, and T. J. Cui, "Three-dimensional broadband and high-directivity lens antenna made of metamaterials," J. Appl. Phys., Vol. 110, 044904-8, 2011.

25. Ma, H. F., X. Chen, X. M. Yang, W. X. Jiang, and T. J. Cui, "Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials," J. Appl. Phys., Vol. 107, 014902-9, 2010.

26. Bakoglu, H., Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley, 1990.

27. Kabiri, A., Q. He, M. Kermani, and O. M. Ramahi, "Design of a controllable delay line," IEEE Trans. Advanced Packaging, Vol. 33, 1080-1087, 2010.

28. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K-Y. Kang, Y-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, 369-373, 2011.

29. Ramahi, O. M. and M. Ruphuy, "Flat lenses and re°ectors and method for construction,", Patent Application No. US61912634, 2010.