Vol. 45
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-02-01
Compact Microstrip Bandpass Filter Improved by DMS and Ring Resonator
By
Progress In Electromagnetics Research Letters, Vol. 45, 7-12, 2014
Abstract
In this paper, complementary split ring resonators (CSRRs) as band-stop elements are used in combination with coupled microstrip lines as high and low pass elements to design and fabricate very compact bandpass filter (BPF) having controllable characteristics. The proposed filter provides several advantages such as compactness (occupying area less than 0.1λg × λg in which λg is calculated at center frequency of pass band), sharp rejection, low insertion loss (IL less than -8.5 dB in all of the bandwidth), good return loss (RL 3-dB bandwidth of roughly 2 GHz from 0.7 GHz to 2.7 GHz i.e. more than 115% FBW) and low cost. Defected Microstrip and Ring Resonator Structures have been used for eliminating the created spurious pass band in upper frequencies. The simulation results have been done with full-wave softwares i.e. CST and HFSS by time and frequency domain solvers, respectively. Also, the equivalent lossless lumped circuit of total structure has been obtained and simulated by ADS software. These simulated results show good agreements with experimental ones.
Citation
Mahdi Oliaei, Majid Tayarani, and Mahmood Karami, "Compact Microstrip Bandpass Filter Improved by DMS and Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 45, 7-12, 2014.
doi:10.2528/PIERL13121302
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Almalkawi, M. J. and V. K. Devabhaktuni, "Compact realization of combline bandpass filter integrated with defected microstrip structure bandstop filter," Progress In Electromagnetics Research Letters, Vol. 35, 99-105, 2012.
doi:10.2528/PIERL12091810

3. Lee, J. and Y. Kim, "Ultra-wideband bandpass filter with improved upper stopband performance using defected ground structure," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 316-318, Jun. 2010.
doi:10.1109/LMWC.2010.2047469

4. Hsieh, L. H. and K. Chang, "Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 12, No. 4, 1241-1246, 2003.
doi:10.1109/TMTT.2003.809643

5. Zhu, L., H. Bu, and K. Wu, "Broadband and compact multi-pole microstrip bandpass filters using ground plane aperture technique," Proc. Inst. Elect. Eng., Vol. l49, No. 1, 71-77, 2002.

6. Mondal, P., M. K. Mandal, and A. Chaktabarty, "Compact bandpass filters with wide controllable fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 10, 71-77, 2006.
doi:10.1109/LMWC.2006.882401

7. Fallahzadeh, S. and M. Tayarani, "A compact microstrip bandstop filter," Progress In Electromagnetics Research Letters, Vol. 11, 167-172, 2009.
doi:10.2528/PIERL09082407

8. Fallahzadeh, S., H. Bahrami, A. Akbarzadeh, and M. Tayarani, "High-isolation dual-frequency operation patch antenna using spiral defected microstrip structure," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 122-124, 2010.
doi:10.1109/LAWP.2010.2043810

9. Mallahzadeh, A. R., B. Rahmati, M. Alamolhoda, R. Sharifzadeh, and A. H. Ghasemi, "Ultra wide stop band LPF with using defected microstrip structures," IEEE Conference Publications, 6th European Conference on Antennas and Propagation (EUCAP), 1-3, 2012.

10. Liu, H. W., Z. C. Zhang, S. Wang, L. Zhu, X. H. Guan, J. S. Lim, and D. Ahn, "Compact dual-band bandpass filter using defected microstrip structure for GPS and WLAN applications," IET Journals & Magazines, Electronics Letters, Vol. 46, 1444-1445, 2010.
doi:10.1049/el.2010.2146

11. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters, Theory, Design, and Microwave Application, John Wiley & Sons, Inc., 2008.

12. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619