Vol. 45
Latest Volume
All Volumes
2014-04-09
Surface Plasmon Wave Manipulated by Quantum Coherence of Multilevel Quantum Dots
By
Progress In Electromagnetics Research Letters, Vol. 45, 89-98, 2014
Abstract
An EIT (electromagnetically induced transparency)-based prism coupler is suggested for realizing tunable reflection spectrum via quantum coherence of phases in a multilevel system, where destructive and constructive quantum interference will occur among multilevel transition pathways that are driven by two external control fields. In this prism coupler, a semiconductor-quantum-dot (SQD) medium layer, which can exhibit EIT and relevant quantum coherent effects, bounds the prism base, and the two external control fields are used to manipulate the probe field and the excited surface plasmon wave (on the SQD layer surface). Then the surface plasmon wave modes, which are generated by the probe field incident into this multilevel SQD medium layer, can be coherently tunable through the switchable quantum interference (destructive and constructive quantum interference) among the energy levels in the SQD systems. Such switchable quantum interference can be realized if we tune the intensities (i.e., adjust a proper intensity ratio) of the two control fields that drive the SQD multilevel EIT system. New switchable photonic devices, which could find applications in photonic microcircuits as well as some areas in integrated optical circuits, could be designed based on this quantum interference switchable surface plasmon resonance.
Citation
Katus Maski, "Surface Plasmon Wave Manipulated by Quantum Coherence of Multilevel Quantum Dots," Progress In Electromagnetics Research Letters, Vol. 45, 89-98, 2014.
doi:10.2528/PIERL13121104
References

1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

2. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, 189-193, 2006.
doi:10.1126/science.1114849

3. Yoon, J., S. H. Song, and J.-H. Kim, "Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: An upper limit," Opt. Express, Vol. 16, 1269-1279, 2008.
doi:10.1364/OE.16.001269

4. Shin, H. and S. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett.,, Vol. 96, 073907, 2006.
doi:10.1103/PhysRevLett.96.073907

5. Kim, H., J. Park, and B. Lee, "Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings," Opt. Lett., Vol. 34, 2569-2571, 2009.
doi:10.1364/OL.34.002569

6. Mueckstein, R. and O. Mitrofanov, "Imaging of terahertz surface plasmon waves excited on a gold surface by a focused beam," Opt. Express, Vol. 19, 3212-3217, 2011.
doi:10.1364/OE.19.003212

7. Zhang, J., S. Xiao, M. Wubs, and N. A. Mortensen, "Surface plasmon wave adapter designed with ransformation optics," ACS Nano, Vol. 5, 4359-4364, 2011.
doi:10.1021/nn200516r

8. Zhong, R.-B., W. -H. Liu, J. Zhou, and S.-G. Liu, "Surface plasmon wave propagation along single metal wire," Chin. Phys. B, Vol. 21, 117303, 2012.
doi:10.1088/1674-1056/21/11/117303

9. Norrman, A., T. Setala, and A. T. Friberg, "Exact surface-plasmon polariton solutions at a lossy interface," Opt. Lett., Vol. 38, 1119-1121, 2013.
doi:10.1364/OL.38.001119

10. Otto, A., "Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., Vol. 216, 398-410, 1968.
doi:10.1007/BF01391532

11. Kretschmann, E., "The determination of the optical constants of metals by excitation of surface plasmons," Z. Phys., Vol. 241, 313-324, 1971.
doi:10.1007/BF01395428

12. Ding, Y., Z. Q. Cao, and Q. S. Shen, "Improved SPR technique for determination of the thickness and optical constants of thin metal films," Opt. Quantum Electron, Vol. 35, 1091-1097, 2003.
doi:10.1023/A:1026219429050

13. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603

14. Weber, W. H. and S. L. McCarthy, "Surface-plasmon resonance as a sensitive optical probe of metal-film properties," Phys. Rev. B, Vol. 12, 5643-5650, 1975.
doi:10.1103/PhysRevB.12.5643

15. Regalado, L. E., R. Machorro, and J. M. Siqueiros, "Attenuated-total-reflection technique for the determination of optical constants," Appl. Opt., Vol. 30, 3176-3180, 1991.
doi:10.1364/AO.30.003176

16. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sens. Actuators B, Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9

17. Jiang, Y., Z. Cao, G. Chen, X. Dou, and Y. Chen, "Low voltage electro-optic polymer light modulator using attenuated total internal reflection," Opt. Laser Technol., Vol. 33, 417-420, 2001.
doi:10.1016/S0030-3992(01)00052-4

18. Schuck, P., "Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules," Annu. Rev. Biophys. Biomol. Struct., Vol. 26, 541-566, 1997.
doi:10.1146/annurev.biophys.26.1.541

19. Janes, P., J. Tidstrom, and L. Thyen, "Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media," J. Lightwave Tech., Vol. 23, 3893-3899, 2005.
doi:10.1109/JLT.2005.857733

20. Mathew, R., C. E. Pryor, M. E. Flatte, and K. C. Hall, "Optimal quantum control for conditional rotation of exciton qubits in semiconductor quantum dots," Phys. Rev. B, Vol. 84, 205322, 2011.
doi:10.1103/PhysRevB.84.205322

21. Arve, P., P. JÄanes, and L. Thylen, "Propagation of two-dimensional pulses in electromagnetically induced transparency media," Phys. Rev. A, Vol. 69, 063809, 2004.
doi:10.1103/PhysRevA.69.063809

22. Scully, M. O. and M. S. Zubairy, Quantum Optics, Chap. 7, Cambridge University Press, Cambridge, England, 1997.
doi:10.1017/CBO9780511813993

23. Paspalakis, E. and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A, Vol. 66, 015802, 2002.
doi:10.1103/PhysRevA.66.015802

24. Shen, J. Q. and P. Zhang, "Double-control quantum interferences in a four-level atomic system," Opt. Express, Vol. 15, 6484-6493, 2007.
doi:10.1364/OE.15.006484

25. Kim, J., S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, "Slow light using semiconductor quantum dots," J. Phys.: Condens. Matter, Vol. 16, S3727-S3735, 2004.
doi:10.1088/0953-8984/16/35/014

26. Nielsen, P. K., H. Thyrrestrup, and B. Tromborg, "Numerical investigation of electromagnetically induced transparency in a quantum dot structure," Opt. Express, Vol. 15, 6396-6408, 2007.
doi:10.1364/OE.15.006396

27. Cao, Z. Q., Optics of Guided Waves, Chap. 9, Science Press of China, Beijing, 2007.

28. Yeh, P., "Optical Waves in Layered Media," Chaps. 4-6, 83-143, John Wiley & Sons, Inc., New Jersey, USA , 2005.

29. Caloz, C. and T. Itoh, lectromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Chap. 2, John Wiley & Sons, Inc., New Jersey, USA, 2006.

30. Fu, Y., F. Ferdos, M. Sadeghi, S. M. Wang, and A. Larsson, "Photoluminescence of an assembly of size-distributed self-assembled InAs quantum dots," J. Appl. Phys., Vol. 92, 3089-3092, 2002.
doi:10.1063/1.1499528

31. Chang-Hasnain, C. J., P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE, Vol. 9, 1884-1897, 2003.
doi:10.1109/JPROC.2003.818335

32. Lunnemanna, P. and J. Mork, "Reducing the impact of inhomogeneous broadening on quantum dot based electromagnetically induced transparency," Appl. Phys. Lett., Vol. 94, 071108, 2009.
doi:10.1063/1.3079676

33. Gready, D. and G. Eisenstein, "Effects of homogeneous and inhomogeneous broadening on the dynamics of tunneling injection quantum dot lasers," IEEE J. Quantum Electron., Vol. 47, 944-949, 2011.
doi:10.1109/JQE.2011.2134835

34. Taleb, H. and K. Abedi, "Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers," Front. Optoelectron., Vol. 5, 445-456, 2012.
doi:10.1007/s12200-012-0288-4