Vol. 144
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-01-28
Impedance Dependency on Planar Broadband Dipole Dimensions: an Examination with Antenna Equivalent Circuits
By
Progress In Electromagnetics Research, Vol. 144, 249-260, 2014
Abstract
The present paper considers the connection between complex input impedance and the physical dimensions for planar ultra wideband (UWB) antennas. The first time the effect of both the actual radiator width and length for impedance behaviour is comprehensively presented. Also the effect of feed point dimensions on complex impedance is studied. The investigations involve both UWB single-resonant dipoles to cover bandwidth ≥ 500 MHz and a multi-resonant dipole for the entire Federal Communications Commission's (FCC) frequency band of 3.1-10.6 GHz. Lumped-element equivalent circuits are used identically with 3D antenna simulations in order to observe the corresponding impedance behaviour with the studied antennas. The used equivalent circuits consisting of series- and parallel-resonant stages are widely accepted in the open literature. The series-resonant circuit of equivalent is observed to have the analogue to the antenna feeding area. The physical dipole dimensions in terms of a length and width are connected to parallel-resonant part, which mainly determines the antenna input impedance. The resistance of a parallel-resonant stage behaves as the maximum value of real part of dipole impedance with an influence on bandwidth together with the ratio of parallel capacitance C and inductance L. The increase of the antenna physical width has an effect on bandwidth, because of the wider the antenna, the higher the capacitance in the antenna feed. Since the traditional dipoles are used for these studies, the results can be extended in several ways for other antenna types or, for instance, to verify the effect of body tissue, close to a wearable antenna.
Citation
Tommi Tuovinen, and Markus Berg, "Impedance Dependency on Planar Broadband Dipole Dimensions: an Examination with Antenna Equivalent Circuits," Progress In Electromagnetics Research, Vol. 144, 249-260, 2014.
doi:10.2528/PIER13112202
References

1. "Revision of Part 15 of the Commission's rules regarding ultra wideband transmission systems," FCC Notice of Proposed Rule Making, ET-Docket 98-153, FCC 02-48, 2002.
doi:10.1002/0470869194

2. Oppermann, I., M. HamÄalÄainen, and J. Iinatti, UWB Theory and Applications, John Wiley & Sons, 2004.
doi:10.2528/PIER08032303

3. Wang, Y., J. Z. Li, and L. X. Ran, "An equivalent circuit modeling method for ultra-wideband antennas," Progress In Electromagnetics Research, Vol. 82, 433-445, 2008.
doi:10.2528/PIER07120402

4. Joardar, S. and A. B. Bhattacharya, "A novel method for testing ultra wideband antenna-feeds on radio telescope dish antennas," Progress In Electromagnetics Research, Vol. 81, 41-59, 2008.
doi:10.1109/TMTT.2006.886162

5. Morton, M. A., J. P. Comeau, J. D. Cressler, M. Michell, and J. Papapolymerou, "Source of phase error and design considerations for silicon-based monolithic high-pass/low-pass microwave phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4032-4040, Dec. 2006 .
doi:10.1109/JPROC.2012.2188369

6. Adamiuk, G., T. Zwick, and W. Wiesbeck, "UWB antennas for communication systems," Proc. of IEEE, Vol. 100, No. 7, 2308-2321, Jul. 2012.
doi:10.2528/PIERL11090506

7. Jin, X. H., X. D. Huang, C. H. Cheng, and L. Zhu, "Super-wideband printed asymmetrical dipole antenna," Progress In Electromagnetics Research Letters, Vol. 27, 117-123, 2011.

8. Chen, Z. N., A. Cai, T. S. P. See, X. Qing, and M. Y. W. Chia, "Small planar UWB antennas in the proximity of the human head," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 146-1857, Apr. 2006.
doi:10.1109/JPROC.2008.2008838

9. Wiesbeck, W., G. Adamiuk, and C. Sturm, "Basic properties and design principles of UWB antennas," Proc. of IEEE, Vol. 97, No. 2, 372-385, Feb. 2009.

10. Tsai, C.-L., "A coplanar-strip dipole antenna for broadband circular polarization operation," Progress In Electromagnetics Research, Vol. 121, 141{557, , 2011.
doi:10.1109/TAP.2005.859906

11. Klemm, M., I. Z. Kovcs, G. F. Pedersen, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN applications," IEEE Trans. Antennas Propag., Vol. 53, No. 124, 3884-3896, Dec. 2005.
doi:10.1109/TAP.2011.2109361

12. Chahat, N., M. Zhadobov, R. Sauleau, and K. Ito, "A compact UWB antenna for on-body applications," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1123-1131 , Apr. 2011.
doi:10.2528/PIERB08050403

13. Ansarizadeh, M. and A. Ghorbani, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, No. 8, 77-86, 2008.
doi:10.2528/PIER07082502

14. Liu, S. F., X. W. Shi, and S. D. Liu, "Study on the impedance-matching technique for high-temperatue superconducting microstrip antennas," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
doi:10.2528/PIER07120202

15. Akhoondhadeh-Asl, L., M. Fardis, A. Abolghasemi, and G. Dadashzadeh, "Frequency and time domain characteristic of a novel notch frequency UWB antenna," Progress In Electromagnetics Research, Vol. 80, 337-348, 2008.
doi:10.1109/8.650083

16. Hamid, M. and R. Hamid, "Equivalent circuit of dipole antenna of arbitrary length," IEEE Trans. Antennas Propag.,, Vol. 45, No. 11, 1695-1696, Nov. 1997.
doi:10.1109/JSAC.2005.863873

17. Wang, S. B. T., A. M. Niknejad, and R. W. Brodersen, "Circuit modeling methodology for UWB omnidirectional small antennas," IEEE J. Sel. Areas Commun., Vol. 24, No. 4, 871-877, Apr. 2006.
doi:10.1049/ip-map:19990776

18. Rambabu, K., M. Ramesh, and A. T. Kalghatgi, "Broadband equivalent circuit of a dipole antenna," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 146, No. 6, 391-393, Dec. 1999.
doi:10.1109/LAWP.2010.2057237

19. Holopainen, J., R. Valkonen, O. KivekÄas, J. Ilvonen, and P. Vainikainen, "Broadband equivalent circuit model for capacitive coupling element-based mobile terminal antenna," IEEE Antennas Wireless Propag. Lett., Vol. 9, 716-719, 2010.

20. RÄaisÄanen, A. V. and A. Lehto, "Radio Engineering for Wireless Communication and Sensor Applications," Artech House, 2003.

21. "Computer Simulation Technology Microwave Studio Software,".
doi:http://www.cst.com

22. Schelkunoff, S. A., "Theory of antennas of arbitrary size and shape," Proc. of the IRE, Vol. 29, 493-521, Sep. 1941.
doi:10.1002/mop.21529

23. Kim, Y. and H. Ling, "Equivalent circuit modeling of broadband antennas using a rational function approximation," Microw. and Opt. Tech. Lett., Vol. 48, No. 5, 950-953, May 2006.
doi:10.1002/cta.295

24. Yarman, B. S., A. Kiling, and A. Aksen, "Immitance data modelling via linear interpolation techniques: A classical circuit theory approach," Int. J. Circuit Theory Appl., Vol. 32, 537-563, 2004.
doi:10.1109/8.210122

25. Tang, T. G., Q. M. Tien, and M. W. Gunn, "Equivalent circuit of a dipole antenna using frequency-independent lumped elements," IEEE Trans. Antennas Propag., Vol. 41, No. 1, 100-103, Jan. 1993.

26. Balanis, C. A., "Antenna Theory Analysis and Design," John Wiley & Sons, 2005.

27. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., John Wiley & Sons, 1998.