Vol. 144
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-12-13
Induced Voltage on the Overhead Line at Oil Exploiting Port Under Lightning Strike
By
Progress In Electromagnetics Research, Vol. 144, 33-43, 2014
Abstract
In this paper, a computational model is established for the finite-difference time-domain analyses of induced voltage on the overhead line at oil exploiting port under lightning strike. The MTLL approximate formulation is used to simulate the lightning strike, and convolutional perfectly matched layers are used to truncate the computational domain. A two-step method is established to calculate the coupling to the overhead lines to reduce the huge computational domain of the conventional 3-D FDTD simulation. Parallel implementation is introduced for the second-step calculation to overcome the memory storage limit of a single computer. With this model, the electromagnetic field at the adjacent areas and the induced voltage on the overhead line are studied when lightning strikes an oil derrick. It is demonstrated that the electromagnetic field decreases as the distance from the oil derrick increases, but the vertical field decrease much slower than the horizontal field. It is also shown that the transversely located overhead line will introduce lower voltage than the radially located line. As the length of the overhead line increases, the induced voltage increases and the low-frequency induction is strengthened. The overhead line should be set as low as possible to reduce the induced voltage.
Citation
Xin Meng, Bi-Hua Zhou, and Bo Yang, "Induced Voltage on the Overhead Line at Oil Exploiting Port Under Lightning Strike," Progress In Electromagnetics Research, Vol. 144, 33-43, 2014.
doi:10.2528/PIER13110605
References

1. IEC 62305-3, "Protection Against Lightning --- Part 3: Physical Damage to Structures and Life Hazard,", 2006.
doi:10.1109/TPAS.1984.318405

2. Master, M. J. and M. A. Uman, "Lightning-induced voltage on power line: Theory ," IEEE Trans. on Power, Apparatus, Syst., Vol. 103, 2502-2518, Sep. 1984..
doi:10.1029/JD095iD09p13621

3. Diendorfer, G. and M. A. Uman, "An improved return stroke model with specified channel-base current," J. Geophys. Res., Vol. 95, No. 13, 13621-13644, 1990.
doi:10.1109/TAP.1986.1143721

4. Cooray, V. and F. de la Rosa, "Shapes and amplitudes of the initial peaks of lightning-induced voltage in power lines over ¯nitely conducting earth: Theory and comparison with experiment," IEEE Trans. on Antennas and Propagat., Vol. 34, 88-92, Jan. 1986.

5. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-Hybrid Methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.

6. Izadi, M., "Evaluation of lightning current and velocity pro¯les along lightning channel using measured magnetic flux density," Progress in Electromagnetics Research, Vol. 130, 473-492, 2012.

7. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and V. Cooray, "Evaluation of lightning return stroke current using measured electromagnetic fields,", Vol. 130, 581-600, 2012.

8. Gomes, C. and M. Z. A. A. Kadir, "Protection of naval systems against electromagnetic effects due to lightning," Progress In Electromagnetics Research, Vol. 113, 333-349, 2011.
doi:10.1109/TPWRD.2003.820196

9. Paolone, M., C. A. Nucci, E. Petrache, and F. Rachidi, "Mitigation of lightning-induced overvoltage in medium voltage distribution lines by means of periodical grounding of shielding overhead line and of surge arresters: Modelling and experimental validation ," IEEE Trans. on Power Del., Vol. 19, No. 1, 423-431, Jan. 2004.
doi:10.1109/15.536087

10. Rubinstein, M., "An approximate formula for the calculation of the horizontal field from lightning at close, intermediate and long range," IEEE Trans. on Electromagn Compat., Vol. 38, 531-535, 1996.
doi:10.1109/15.736222

11. Cooray, V. and V. Scuka, "Lightning induced overvoltage in power lines: Validity of various approximations made in overvoltage calculations," IEEE Trans. on Electromagn. Compat., Vol. 40, No. 4, 355-363, 1998.

12. Norton, K. A., "Propagation of radio waves over the surface of the earth in the upper atmosphere," Proc. IEEE, Vol. 25, 1203-1237, 1937.

13. Maclean, T. S. M. and Z. Wu, "Radiowave Propagation over Ground," Chapman and Hall, 1993.
doi:10.1029/91RS02918

14. Cooray, V., "Horizontal fields generated by return strokes," Radio Sci., Vol. 27, 529-537, Jul 1992.
doi:10.1109/15.917942

15. Cooray, V., "Underground electromagnetic ¯elds generated by the return strokes of lightning flashes," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 1, 75-84, 2001.
doi:10.1109/TEMC.2007.897127

16. Delfio, F., R. rocopio, M. Rossi, et al. "An algorithm for the exact evaluation of the underground lightning electromagnetic fields," IEEE Trans. on Electromagn. Compat., Vol. 49, No. 2, 401-411, 2007.

17. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method , 3rd Ed., Artech House, 2005.

18. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetic Research, Vol. 132, 159-175, 2012.

19. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012.

20. Xiong, R., B. Chen, Y.-X. Mao, and W. Yang, "Optimal programs to reduce the resistance of grounding systems," Progress In Electromagnetics Research, Vol. 139, 211-227, 2013.

21. Xiong, R., B. Chen, L.-H. Shi, Y.-T. Duan, and G. Zhang, "A simple method to reduce the peak transient grounding resistance value of a grounding system," Progress In Electromagnetics Research , Vol. 138, 255-267, 2013.

22. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11082512

23. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stage split-step unconditional-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER10102707

24. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER11112702

25. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A Novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.1109/28.293730

26. Morris, M. E., R. J. Fisher, G. H. Schnetzer, K. O. Merewether, and R. E. Jorgenson, "Rocket-triggered lightning studies for the protection of critical assets," IEEE Transactions on Industry Applications, Vol. 30, No. 3, 355-373, 1994.
doi:10.1109/61.736741

27. Rachidi, F., C. A. Nucci, and M. Ianoz, "Transient analysis of multiconductor lines above a lossy ground," IEEE Trans. on Power Del., Vol. 14, No. 1, 294-302, 1999.

28. Rakov, V. A. and A. A. Dulzon, "Calculated electromagnetic fields of lightning return stroke," Tekh. Elektrodianm., Vol. 1, 87-89, 1987.
doi:10.1109/TEMC.1981.303970

29. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. on Electromagn. Compat., Vol. 23, 377-382, 1981.

30. Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analyses," Scientia Sinica, Series A, Vol. XXVII, 1063-1076, 1984.
doi:10.1006/jcph.1994.1159

31. Berenger, J. P., "A perfectly matched layer for the absorption of the electromagnetic waves," J. Comput. Phys., 185-200, 1994.

32. Chen, B., D. G. Fang, and B. H. Zhou, "Modified berenger PML absorbing boundary condition for FDTD meshes," IEEE Microwave and Guided Wave Letters, Vol. 44, No. 12, 1630-1639, Nov. 1995.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

33. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Lett.,, Vol. 27, 334-339, 2000.

34. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3-D subgridding FDTD algorithm for large simulation," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.
doi:10.2528/PIER10041603

35. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.

36. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.

37. Baba, Y. and V. A. Rakov, "On the use of lumped sources in lightning return stroke models," J. Geophys Res., Vol. 110, D03101, 2005.
doi:10.1029/JC074i028p06899

38. Uman, M. A. and D. K. McLain, "Magnetic field of the lightning return stroke," J. Geophys. Res., Vol. 74, 6899-6910, 1969.

39. Nucci, C. A., C. Mazzetti, F. Rachidi, et al. "On lightning return stroke models for LEMP calculations," Proc. 19th Int. Conf. Lightning Protection, Apr. 1988.

40. Bruce, C. E. R. and R. H. Golde, "The lightning discharge," J. Inst. Elect. --- Pt. 2, Vol. 88, 487-520, 1941.

41. Heidler, F., "Traveling current source model for LEMP calculation," Proc. 6th Int. Zurich Symp. Electromagn. Compat. , 157-162, Mar. 1985.