Vol. 144
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-01-29
Performance Enhancement of Target Recognition Using Feature Vector Fusion of Monostatic and Bistatic Radar
By
Progress In Electromagnetics Research, Vol. 144, 291-302, 2014
Abstract
This paper proposes a fusion technique of feature vectors that improves the performance of radar target recognition. The proposed method utilizes more information than simple monostatic or bistatic (single receiver) algorithms by combining extracted feature vectors from multiple (two or three) receivers. In order to verify the performance of the proposed method, we use the calculated monostatic and bistatic RCS of three full-scale aircraft and the measured monotatic and bistatic RCS of four scale-model targets. The scattering centers are extracted using one-dimensional FFT-based CLEAN and then used as feature vectors for a neural network classifier. The results show that our method has better performance than algorithms that solely use monostatic or bistatic data.
Citation
Seung-Jae Lee, In-Sik Choi, Byunglae Cho, Edward J. Rothwell, and Andrew K. Temme, "Performance Enhancement of Target Recognition Using Feature Vector Fusion of Monostatic and Bistatic Radar," Progress In Electromagnetics Research, Vol. 144, 291-302, 2014.
doi:10.2528/PIER13103101
References

1. Choi, I.-S., "Extraction of scattering center and natural frequency using evolutionary programming-based CLEAN," Ph.D. Dissertation, POSTECH, 2003.

2. Seo, D.-K., K.-T. Kim, I.-S. Choi, and H.-T. Kim, "Wide-angle radar target recognition with subclass concept," Progress In Electromagnetics Research, Vol. 44, 231-248, 2004.
doi:10.2528/PIER03060301

3. Cho, S.-W. and J.-H. Lee, "Effect of threshold value on the performance of natural frequency -based radar target recognition," Progress In Electromagnetics Research, Vol. 135, 527-562, 2013.
doi:10.2528/PIER12103104

4. Kim, K.-T. and H.-T. Kim, "One-dimensional scattering centre extraction for efficient radar target classification," IEE Proceedings | Radar, Sonar and Navigation, Vol. 146, No. 3, 147-158, Jun. 1999.
doi:10.1163/156939303322226464

5. Choi, I.-S., D.-K. Seo, J.-K. Bang, H.-T. Kim, and E. J. Rothwell, "Radar target recognition using one-dimensional evolutionary programming-based CLEAN," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 763-784, 2003.
doi:10.2528/PIER09030804

6. Kim, K.-T., D.-K. Seo, and H.-T. Kim, "Radar target identification using one-dimensional scattering centres," IEE Proceedings | Radar, Sonar and Navigation, Vol. 148, No. 5, 285-296, Oct. 2001.
doi:10.1163/156939305775570512

7. Li, X.-F., Y.-J. Xie, and R. Yang, "Bistatic RCS prediction for complex targets using modified current marching technique," Progress In Electromagnetics Research, Vol. 93, 13-28, 2009.

8. Alivizatos, E. G., M. N. Petsios, and N. K. Uzunoglu, "Towards a range-doppler UHF multistatic radar for the detection of non-cooperative targets with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2015-2031, 2005.

9. Wills, N. J., Bistatic Radar, 2nd Ed., 2007.
doi:10.2528/PIER10010603

10. Willis, N. J. and H. D. Griffths, "Advances in Bistatic Radar,", 2007.

11. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.1155/ASP/2006/35043

12. Lee, S.-J. and I.-S. Choi, "Bistatic radar target classification using time-frequency analysis and multilayered perceptron neural network," PIERS Proceedings, 1569-1671, Mar. 2011.
doi:10.1109/8.1144

13. Radoi, E., A. Quinquis, and F. Totir, "Supervised self-organizing classification of super resolution ISAR images: An anechoic chamber experiment," EURASIP Journal on Applied Signal Processing, Vol. 2006, 1-14, 2006.
doi:10.1109/TAES.2012.6324734

14. Taso, J. and R. D. Steinberg, "Reduction of sidelobe and speckle artifacts in microwave imaging: The CLEAN technique," IEEE Transactions Antennas and Propagation, Vol. 36, No. 4, 543-556, 1988.
doi:10.1109/TAP.1987.1144210

15. Misiurewicz, J., K. S. Kulpa, Z. Czekala, and T. A. Filipek, "Radar detection of helicopters with application of CLEAN method," IEEE Transactions Aerospace and Electronic Systems, Vol. 48, No. 4, 3525-3537, 2012.
doi:10.1109/TSP.2003.818908

16. Hurst, M. P. and R. Mittra, "Scattering center analysis via Prony's method," IEEE Transactions Antennas and Propagation, Vol. 35, No. 8, 98-988, Aug. 1987.

17. Lee, J.-H., I.-S. Choi, and H.-T. Kim, "Natural frequency-based neural network approach to radar target recognition," IEEE Transactions on Signal Processing, Vol. 51, No. 12, 3191-3197, Dec. 2003.