Vol. 143
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-11-20
A Wideband Frequency-Shift Keying Modulation Technique Using Transient State of a Small Antenna (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 143, 421-445, 2013
Abstract
The rate of wireless data transmission is limited by the antenna bandwidth. We present an efficient technique to realize a high-rate direct binary FSK modulation by using the transient properties of high-Q antennas. We show that if the natural resonance of a narrowband resonant-type antenna is switched at a high rate, the radiating signal follows the variation of resonant frequency and provides a high-rate data-transmission regardless of the narrowband characteristics of the antenna. The bit-rate in this method is dictated by the switching speed rather than the impedance bandwidth. Since the proposed technique employs the antenna in a time-varying arrangement, carrier frequencies are not required to be simultaneously within the antenna bandwidth. When demanded, the antenna is tuned to required carrier frequency according to a sequence of digital data. Moreover, if the switching frequency is properly chosen such that the stored energy in the near-zone is not dramatically disturbed, any variation in the antenna resonance will instantaneously appear in the far-field radiation due to the previously accumulated energy in the near field. Therefore, depending on the Q factor and switching speed, radiation bandwidth of the antenna can be improved independently from the impedance bandwidth. Furthermore, we show that a single RF source is sufficient to excite both carrier frequencies and the need for a VCO is obviated. Experimental results are presented to validate the feasibility of the proposed technique.
Citation
Mohsen Salehi, Majid Manteghi, Seong-Youp Suh, Soji Sajuyigbe, and Harry G. Skinner, "A Wideband Frequency-Shift Keying Modulation Technique Using Transient State of a Small Antenna (Invited Paper)," Progress In Electromagnetics Research, Vol. 143, 421-445, 2013.
doi:10.2528/PIER13102204
References

1. Ghovanloo, M. and K. Najafi, "A wideband frequency-shift keying wireless link for inductively powered biomedical implants," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 51, No. 12, 2374-2383, 2004.
doi:10.1109/TCSI.2004.838144

2. Miranda, H., V. Gilja, C. A. Chestek, K. V. Shenoy, and T. H. Meng, "HermesD: A high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications,", Vol. 4, No. 3, 181-191, Jun. 2010.

3. Lee, S. B., M. Yin, J. R. Manns, and M. Ghovanloo, "A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas," IEEE Transactions on Biomedical Circuits and Systems, Vol. 60, No. 7, 1993-2004, Jul. 2013.

4. Chu, L. J., "Physical limitations on omni-directional antennas," Journal of Applied Physics , Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038

5. Harrington, R. F., "Effect of antenna size on gain, bandwidth, and effciency," Journal of Research of the National Bureau of Standards , Vol. 64D, 1-2, Jan. 1960.

6. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 672-675, May 1996.
doi:10.1109/8.496253

7. Salehi, M. and M. Manteghi, "Utilizing non-linear inductors for bandwidth improvement," URSI-USNC National Radio Science Meeting, 2011.

8. Salehi, M. and M. Manteghi, "Bandwidth enhancement using nonlinear inductors," 2011 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2011.

9. Manteghi, M., "An inexpensive phased array design using impedance modulation," URSI-USNC National Radio Science Meeting, 2010.

10. Manteghi, M., "Non-LTI systems, a new frontier in electromag-netics theory," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.
doi:10.1109/APS.2010.5562223

11. Manteghi, M., "Antenna miniaturization beyond the fundamental limits," URSI-USNC National Radio Science Meeting, 2009.

12. Manteghi, M., "A switch-band antenna for software-defined radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 3-5, 2009.
doi:10.1109/LAWP.2008.2005256

13. Manteghi, M., "Antenna miniaturization beyond the fundamental limits using impedance modulation," 2009 IEEE Antennas and Propagation Society International Symposium, (APSURSI), 1-4, 2009.
doi:10.1109/APS.2009.5171747

14. Wheeler, H. A., "Fundamental limitations of small antennas," Proceedings of the IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199

15. Schaubert, D. H., "Application of Prony's method to time-domain reflecto-meter data and equivalent circuit synthesis," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 2, 180-184, Mar. 1979.
doi:10.1109/TAP.1979.1142060

16. Schelkunoff, S. A., "Representation of impedance functions in terms of resonant frequencies," Proceedings of the IRE, Vol. 32, No. 2, 83-90, Feb. 1944.
doi:10.1109/JRPROC.1944.229735

17. Kim, Y. and H. Ling, "Equivalent circuit modeling of broadband antennas using a rational function approximation," Microwave and Optical Technology Letter, Vol. 48, No. 5, 950-953, May 2006.
doi:10.1002/mop.21529

18. Adve, R. S., T. K. Sarkar, S. M. Rao, E. K. Miller, and D. R. Pflug, "Application of the cauchy method for extrapolating/interpolating narrow-band system responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 5, 837-845, May 1997.
doi:10.1109/22.575608

19. Michalski, K. A. and L. W. Pearson, "Equivalent circuit synthesis for a loop antenna based on the singularity expansion method," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 5, 433-441, May 1984.
doi:10.1109/TAP.1984.1143349

20. Simpson, T. L., J. C. Logan, and J. W. Rockway, "Equivalent circuits for electrically small antennas using LS-decomposition with the method of moments ," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 12, 1632-1635, Dec. 1989.
doi:10.1109/8.45109

21. Hamid, M. and R. Hamid, "Equivalent circuit of dipole antenna of arbitrary length," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1695-1696, Nov. 1997.
doi:10.1109/8.650083

22. Love, A. W., "Equivalent circuit for aperture antennas," Electronics Letters, Vol. 23, No. 13, 708-710, 1987.
doi:10.1049/el:19870504