Vol. 44
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-11-21
Compact LPF with Sharp Roll off and Wide Stopband Using Coupling Stepped Impedance Triangular Resonator
By
Progress In Electromagnetics Research Letters, Vol. 44, 29-34, 2014
Abstract
A lowpass filter with sharp transition and wide stopband using a novel coupling stepped-impedance triangular resonator is presented. The L-C equivalent circuit is developed for designing this type filter and analyzing the mechanism for improving roll-off and rejection property. The stopband width, passband edge, roll-off rate and overall suppression level are affected by coupling capacitance. The effect of coupling capacitance is analyzed using calculated frequency response. Coupling triangular stubs provide adequate coupling capacitance resulting in balance among transition property, stopband width and suppression level easily. A single LPF unit is designed and fabricated with cutoff frequency of 860 MHz. The single LPF unit exhibits 40-dB suppression level from 1.11 GHz to 2.28 GHz. A cascaded LPF with three asymmetric units provides 40-dB suppression level from 1.1 GHz to 6.76 GHz, and roll-off rate of 154 dB/GHz with compact size as small as 0.23λg × 0.05λg, where λg is guided wavelength at cutoff frequency.
Citation
Zebao Du, Hao Yang, Haiying Zhang, and Min Zhu, "Compact LPF with Sharp Roll off and Wide Stopband Using Coupling Stepped Impedance Triangular Resonator," Progress In Electromagnetics Research Letters, Vol. 44, 29-34, 2014.
doi:10.2528/PIERL13102203
References

1. Cao, H. L., W. B. Ying, H. Li, and S. Z. Yang, "Compact lowpass filter with ultra-wide stopband rejection using meandered-slot dumbbell resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17--18, 2203-2210, Dec. 2012.
doi:10.1080/09205071.2012.729501

2. Cao, H., W. Ying, H. Li, and S. Yang, "Compact lowpass filter with wide stopband using novel windmill resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17--18, 2234-2234, Dec. 2012.
doi:10.1080/09205071.2012.732024

3. Hayati, M., S. Roshani, S. Roshani, and F. Shama, "A novel miniaturized Wilkinson power divider with nth harmonic suppression," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 6, 726-735, Apr. 2013.
doi:10.1080/09205071.2013.786204

4. Yang, R. Y., Y. L. Lin, C. Y. Hung, and C. C. Lin, "Design of a compact and sharp-rejection low-pass filter with a wide stopband," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17--18, 2284-2290, Dec. 2012.
doi:10.1080/09205071.2012.733495

5. Li, L., Z. F. Li, and J. F. Mao, "Compact lowpass filters with sharp and expanded stopband using stepped impedance hairpin units," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 310-312, Jun. 2010.
doi:10.1109/LMWC.2010.2047457

6. Hsieh, L. H. and K. Chang, "Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 1, 193-199, Jan. 2003.
doi:10.1109/TMTT.2002.806901

7. Velidi, V. K. and S. S. Sanyal, "Sharp roll-offlowpass filters with wide stopband using stub-loaded coupled-line hairpin unit," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 6, 303-303, Jun. 2011.

8. Ma, K. and K. S. Yeo, "New ultra-wide stopband low-pass filter using transformed radial stubs," IEEE Trans. on Microw. Theory and Tech., Vol. 59, No. 3, 604-611, Mar. 2011.
doi:10.1109/TMTT.2010.2095031

9. David, M. P., Microwave Engineering, 3rd Ed., New York, 2005.

10. Hong, J. S. and M. J. Lancaster, "Microstrip Filters for RF/Microwave Applications," Wiley, 2001.