Vol. 57
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-12-06
Electromagnetic Wave Scattering from Rough Layered Interfaces: Analysis with the Small Perturbation Method and the Small Slope Approximation
By
Progress In Electromagnetics Research B, Vol. 57, 177-190, 2014
Abstract
We propose a theoretical study on the electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces by using the small perturbation method and the small slope approximation. The interfaces are characterized by Gaussian height distributions with zero mean values and Gaussian correlation functions. They can be correlated or not. The electromagnetic field in each medium is represented by a Rayleigh expansion and a perturbation method is used for solving the boundary value problem and determining the first-order scattering amplitudes by recurrence relations. The scattering amplitude under the first-order small slope approximation are deduced from results derived from the first-order small perturbation method. Comparison between these two analytical models and a numerical method based on the combination of scattering matrices is presented.
Citation
Abla Berrouk, Richard Dusséaux, and Saddek Afifi, "Electromagnetic Wave Scattering from Rough Layered Interfaces: Analysis with the Small Perturbation Method and the Small Slope Approximation," Progress In Electromagnetics Research B, Vol. 57, 177-190, 2014.
doi:10.2528/PIERB13101802
References

1. Elson, J. M., "Infrared light scattering from surfaces covered with multiple dielectric overlayers," Appl. Opt., Vol. 16, No. 11, 2873-2881, 1977.

2. Elson, J. M., J. P. Rahn, and J. M. Bennett, "Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties ," Appl. Opt., Vol. 22, No. 20, 3207-3219, 1983.
doi:10.1364/AO.22.003207

3. Amra, C., G. Albrand, and P. Roche, "Theory and application of antiscattering single layers: Antiscattering antireflection coatings," Appl. Opt., Vol. 25, No. 16, 2695-2702, 1986.
doi:10.1364/AO.25.002695

4. Amra, C., J. H. Apfel, and E. Pelletier, "Role of interface correlation in light scattering by a multilayer," Appl. Opt., Vol. 31, No. 6, 3134-3151, 1992.
doi:10.1364/AO.31.003134

5. Afifi, S. and M. Diaf, "Scattering by random rough surfaces: Study of direct and inverse problem," Optics Comm., Vol. 265, 11-17, 2006.
doi:10.1016/j.optcom.2006.02.044

6. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from three-dimensional layered rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 8, 2102-2114, 2006.
doi:10.1109/TGRS.2006.872140

7. Brelet, Y. and C. Bourlier, "SPM numerical results from an effective surface impedance for a one-dimensional perfectly-conducting rough sea surface," Progress In Electromagnetics Research, Vol. 81, 413-436, 2008.
doi:10.2528/PIER07121703

8. Imperatore, P., A. Iodice, and D. Riccio, "Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 4, 1056-1072, 2009.
doi:10.1109/TGRS.2008.2007804

9. Lin, Z. W., X. J. Zhang, and G. Y. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.
doi:10.2528/PIER09061102

10. Afifi, S., R. Dusseaux, and R. de Oliveira, "Statistical distribution of the field scattered by roug layered interfaces: Formulae derived from the small perturbation method," Waves in Random and Complex Media, Vol. 20, No. 1, 1-22, 2010.
doi:10.1080/17455030903329374

11. Afifi, S. and R. Dusseaux, "On the co-polarized phase difference of rough layered surfaces: Formulae derived from the small perturbation method," IEEE Trans. Antennas Propagat., Vol. 59, No. 7, 2607-2618, 2011.
doi:10.1109/TAP.2011.2152347

12. Afifi, S. and R. Dusseaux, "On the co-polarized scattered intensity ratio of rough layered surfaces: The probability law derived from the small perturbation method," IEEE Trans. Antennas Propagat., Vol. 60, No. 4, 2133-2138, 2012.
doi:10.1109/TAP.2012.2186258

13. Voronovich, G., Wave Scattering from Rough Surfaces, Springer, 1994.
doi:10.1007/978-3-642-97544-8

14. Berginc, G. and C. Bourrely, "The small-slope approximation method applied to a three-dimensional slab with rough boundaries," Progress In Electromagnetics Research, Vol. 73, 131-121, 2007.
doi:10.2528/PIER07030806

15. Luo, G. and M. Zhang, "Investigation on the scattering from one-dimensional nonlinear fractal sea surface by second-order small-slope approximation," Progress In Electromagnetics Research, Vol. 133, 425-441, 2013.

16. Tsang, L., J. A. Kong, and K.-H. Ding, , Scattering of Electromagnetic Waves --- Theory and Application, Wiley-Interscience, 2001.

17. Beckmann, P., A. Spizzichino, and , The Scattering of Electromagnetic Waves from Rough Surface, Oxford, 1963.

18. Pinel, N. and C. Bourlier, "Scattering from very rough layers under the geometric optics approximation: Further investigation," J. Opt. Soc. Am. A., Vol. 25, No. 6, 1293-1306, 2008.
doi:10.1364/JOSAA.25.001293

19. Dusseaux, R., P. Chambelin, and C. Faure, "Analysis of rectangular waveguide H-plane junctions in a nonorthogonal coordinate system," Progress In Electromagnetics Research, Vol. 28, 205-229, 2000.
doi:10.2528/PIER99092001

20. Kuo, C.-H. and M. Moghaddam, "Electromagnetic scattering from multilayer rough surfaces with arbitrary dielectric pro¯les for remote sensing of subsurface soil moisture," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 2, 349-366, 2007.
doi:10.1109/TGRS.2006.887164

21. Petit, R., Electromagnetic Theory of Gratings, Springer-Verlag, 1980.
doi:10.1007/978-3-642-81500-3

22. Van Den Berg, P. M. and J. T. Fokkema, "The Rayleigh hypothesis in the theory of diffraction by a perturbation in a plane surface," Radio Sci., Vol. 15, 723-732, 1980.
doi:10.1029/RS015i004p00723

23. Baudier, C. and R. Dusseaux, "Scattering of an E==-polarized plane wave by one-dimensional rough surfaces: Numerical applicability domain of a Rayleigh method in the far-field zone," Progress In Electromagnetics Research, Vol. 34, 1-27, 2001.
doi:10.2528/PIER01010501

24. Mainguy, S. and J. J. Greffet, "A numerical evaluation of Rayleigh theory applied to scattering by randomly rough dielectric surfaces," Waves in Random Media, Vol. 8, No. 1, 79-101, 1998.

25. Born, M. and E. Wolf, Principles of Optics --- Electromagnetic Theory of Propagation Interference and Di®raction of Light, Pergamon, 1980.

26. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, "Scattering of Electromagnetic Waves --- Numerical Simulations," Wiley-Interscience, 2001.