Vol. 34
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-12-01
A Quantitative Evaluation Method of Ground Control Points for Remote Sensing Image Registration
By
Progress In Electromagnetics Research M, Vol. 34, 55-62, 2014
Abstract
Ground control point (GCP) extraction is an essential step in automatic registration of remote sensing images. However the lack of quantitative and objective methods for analyzing GCP quality becomes the bottleneck that prevents the broad development of automatic image registration. Although several measurements for evaluating the number, accuracy and distribution of GCPs have been proposed in recent years, some of them are redundant and the evaluation of dispersion is not effective enough. In this paper, a method for an objective and quantitative evaluation of GCP quality is proposed. The proposed method consists of three parts: measurement calculation, cost function calculation and final validation. In the first part, two new measurements are proposed to evaluate the number, dispersion and isotropy of GCPs, and the root mean square of GCP residuals using leave-one-out method (RMSloo) is used to evaluate the accuracy. In the second part, seed cost functions are utilized to transform the measurements into a limited value range as well as to be desired on the ascending direction. Subsequently, all the seed cost functions are combined by a total cost function to provide an integrated evaluation. In the third part, the GCP scenario is validated by the accepted threshold depending on the value of the total cost function. To evaluate the performance of the proposed method, experiments using four typical emulated scenarios of GCP distribution and two sets of real GCPs in SAR images are considered. The results demonstrate that the proposed GCP evaluation method performs more effectively than the existing methods, especially in the evaluation of dispersion quality.
Citation
Wenting Ma, Jian Yang, Xia Ning, and Wei Gao, "A Quantitative Evaluation Method of Ground Control Points for Remote Sensing Image Registration," Progress In Electromagnetics Research M, Vol. 34, 55-62, 2014.
doi:10.2528/PIERM13092902
References

1. Fan, B., C. Huo, C. Pan, and Q. Kong, "Registration of optical and SAR satellite images by exploring the spatial relationship of the improved SIFT," IEEE Geosci. Remote Sens. Lett, Vol. 10, No. 4, 657-661, 2013.
doi:10.1109/LGRS.2012.2216500

2. Moser, G. and S. B. Serpico, "Unsupervised change detection from multichannel SAR data by Markovian data fusion," IEEE Trans. on Geosci. Remote Sens, Vol. 47, No. 7, 2114-2128, 2009.
doi:10.1109/TGRS.2009.2012407

3. Alparone, L., S. Baronti, A. Garzelli, and F. Nencini, "Landsat ETM+ and SAR image fusion based on generalized intensity modulation," IEEE Trans. on Geosci. Remote Sens., Vol. 42, No. 12, 2832-2839, 2004.
doi:10.1109/TGRS.2004.838344

4. Du, L., H. Liu, Z. Bao, and M. Xing, "Radar HRRP target recognition based on higher order spectra," IEEE Trans. on Signal Process., Vol. 53, No. 7, 2359-2368, 2005.
doi:10.1109/TSP.2005.849161

5. Ma, W. and J. Yang, "Target detection algorithm for polarimetric SAR images using GOPCE," Proc. IEEE CIE Int. Conf. Radar, 507-509, 2011.

6. Chureesampant, K. and J. Susaki, "Automatic GCP extraction of fully polarimetric SAR images," IEEE Trans. on Geosci. Remote Sens., Vol. 52, No. 1, 137-148, 2014.
doi:10.1109/TGRS.2012.2236890

7. Gon»calves, H., J. A. Gon»calves, and L. Corte-Real, "Measures for an objective evaluation of the geometric correction process quality," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 2, 292-296, 2009.
doi:10.1109/LGRS.2008.2012441

8. Buiten, H. J. and B. van Putten, "Quality assessment of remote sensing image registration --- Analysis and testing of control point residuals," ISPRS J. Photogramm. Remote Sens., Vol. 52, No. 2, 57-73, 1997.
doi:10.1016/S0924-2716(97)83001-8

9. Goncalves, H., L. Corte-Real, and J. A. Goncalves, "Automatic image registration through image segmentation and SIFT," IEEE Trans. on Geosci. Remote Sens, Vol. 49, No. 7, 2589-2600, 2011.
doi:10.1109/TGRS.2011.2109389

10. Gon»calves, H., J. A. Gon»calves, and L. Corte-Real, "Automatic image registration based on correlation and Hough transform," Proc. SPIE Image Signal Process. Remote Sens. XIV, 71090J, 2008.
doi:doi: 10.1117/12.800351

11. Wang, S., H. You, and K. Fu, "Wang, S., H. You, and K. Fu, BFSIFT: A novel method to find feature matches for SAR image registration," IEEE Geosci. Remote Sens. Lett., Vol. 9, No. 4, 649-653, 2012.
doi:10.1109/LGRS.2011.2177437

12. Bradley, P. and U. Fayyad, "Refining initial points for K-means clustering," Proc. 15th Int. Conf. Machine Learning, 91-99, 1998.

13. HÄoppner, F., F. Klawonn, and R. Kruse, HÄoppner, F., F. Klawonn, and R. Kruse, Fuzzy Cluster Analysis: Methods for Classification, Data Analysis, and Image Recognition, Wiley, 1999.

14. Hartuv, E. and R. Shamir, "A clustering algorithm based on graph connectivity," Inf. Process. Lett., Vol. 76, No. 4--6 , 6175-6181, 2000.