Vol. 57
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-12-13
Miniaturized Thin Soft Surface Structure Using Metallic Strips with Ledge Edges for Antenna Applications
By
Progress In Electromagnetics Research B, Vol. 57, 221-232, 2014
Abstract
A new thin electromagnetic soft surface of strips in which ledge edges are used to reduce the strip period width and in turns a miniaturized structure is achieved. The designed surface is tested to reduce the mutual coupling between microstrip patches separated by a half wavelength. A 20% relative bandwidth of the bandgap is achieved. Study of the effect of different parameters is presented. The measurements show good agreement with the computed results.
Citation
Said A. Abushamleh, Hussain M. Al-Rizzo, Ahmed A. Kishk, Ayman Abbosh, and Haider Khaleel, "Miniaturized Thin Soft Surface Structure Using Metallic Strips with Ledge Edges for Antenna Applications," Progress In Electromagnetics Research B, Vol. 57, 221-232, 2014.
doi:10.2528/PIERB13092601
References

1. Kildal, P., "Definition of artificially soft and hard surfaces for electromagnetic waves," Electronics Letters, Vol. 24, No. 3, 168-170, 1988.
doi:10.1049/el:19880112

2. Kildal, P., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. Antennas Propag., Vol. 38, No. 10, 1537-1544, 1990.
doi:10.1109/8.59765

3. Kildal, P., "Artificially soft and hard surfaces in electromagnetics and their application to antenna design," 23rd European Microwave Conference, 1993, 30-33, Sep. 1993.
doi:10.1109/EUMA.1993.336763

4. Kildal, P. and A. Kishk, "EM modeling of surfaces with stop or go characteristics --- Artificial magnetic conductors and soft and hard surfaces," ACES Journal, Vol. 18, No. 1, 32-40, 2003.

5. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Planar soft surfaces and their application to mutual coupling reduction," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3852-3859, 2009.
doi:10.1109/TAP.2009.2024226

6. Scire-Scappuzzo, F. and S. N. Makarov, "A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 33-46, 2009.
doi:10.1109/TAP.2008.2009655

7. Simon, A. E. and A. A. Kishk, "Asymptotic strip boundary condition in the finite difference time domain method," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1187-1193, Mar. 2005.
doi:10.1109/TAP.2004.842622

8. Simon, A. E. and A. A. Kishk, "Asymptotic corrugated boundary condition in the finite difference time domain method," Radio Science, Vol. 40, RS6S05, 2005.
doi:doi: 10.1029/2004RS003148

9. Rajo-Iglesias, E., L. Inclan-Sanchez, and O. Quevedo-Teruel, "Back radiation reduction in patch antennas using planar soft surfaces," Progress In Electromagnetics Research Letters, Vol. 6, 123-130, 2009.
doi:10.2528/PIERL08111202

10. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

11. Rajo-Iglesias, E., M. Caiazzo, L. Inclan-Sanchez, and P. Kildal, "Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces," Microwaves, Antennas & Propagation, IET, Vol. 1, No. 1, 184-189, 2007.
doi:10.1049/iet-map:20050327

12. Thai, T., G. DeJean, and M. Tentzeris, "Design and development of a novel compact soft-surface for the front-to-back ratio improvement and size reduction of a microstrip yagi array antenna ," IEEE Trans. Antennas Propag. Lett., Vol. 7, 369-373, 2008.
doi:10.1109/LAWP.2008.2001818

13. Li, R., G. DeJean, M. M. Tentzeris, J. Papapolymerou, and J. Laskar "Radiation-pattern improvement of patch antennas on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 200-208, 2005.
doi:10.1109/TAP.2004.840754

14. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322

15. Abushamleh, S., H. Al-Rizzo, A. Kishk, and H. Khaleel, "Enhancement of the strips electromagnetic soft surfaces using ledge edges," Antennas and Propagation Society International Symposium (APSURSI), 2012 IEEE, 1-2, July 2012.
doi:10.1109/APS.2012.6349211

16. Zheng, Q. R., Y. O. Fu, and N. C. Yuan, "A novel compact spiral electromagnetic band-gap (EBG) structure ," IEEE Trans. Antennas Propag., Vol. 56, 1656-1660, Jun. 2008.
doi:10.1109/TAP.2008.923305

17. Chiu, C. Y., C. H. Cheng, R. Murch, and C. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, 1732-1738, Jun. 2007.
doi:10.1109/TAP.2007.898618

18. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar periodic structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, 1648-1655, Jun. 2008.
doi:10.1109/TAP.2008.923306

19. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Trans. Antennas Wireless Propag. Lett., Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

20. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

21. Vazquez-Antuna, C., G. R. Hotopan, S. Ver-Hoeye, M. Fernandez-Garcia, L. F. Herran Ontanon, and F. Las Heras Andres, "Defected ground structure for coupling reduction between probe fed microstrip antenna elements ," PIERS Proceedings, 640-644, Jul. 2010.

22. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175