Vol. 56
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-11-07
Analysis and Design of Circular Fractal Antenna Using Artificial Neural Networks
By
Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013
Abstract
A Neural Network is a simplified mathematical model based on Biological Neural Network, which can be considered as an extension of conventional data processing technique. In this paper, an Artificial Neural Network (ANN) based simple approach is proposed as forward side for the design of a Circular Fractal Antenna (CFA) and analysis as reverse side of problem. Proposed antenna is simulated up to 2nd iteration using method of moment based IE3D software. Antenna is fabricated on Roger RT 5880 Duroid substrate (High frequency material) for validation of simulated, measured and ANN results. The main advantage of using ANN is that a properly trained neural network completely bypasses the complex iterative process for the design and analysis of this antenna. Results obtained by using artificial neural networks are in accordance with the simulated and measured results.
Citation
Jagtar Singh Sivia, Amar Partap Singh Pharwaha, and Tara Singh Kamal, "Analysis and Design of Circular Fractal Antenna Using Artificial Neural Networks," Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013.
doi:10.2528/PIERB13091611
References

1. Anguera, J., E. Martinez, C. Puente, C. Borja, and J. Soler, "Broadband dual frequency microstrip patch antenna with modified Sierpinski fractal geometry," IEEE Transactions on Antenna and Wave Propagation, Vol. 52, No. 1, 66-73, Jan. 2004.
doi:10.1109/TAP.2003.822433

2. Puente, C., J. Romeu, R. Pous, J. Ramis, and A. Hijazo, "Small but long Koach fractal monopole," IEEE Electronic Letter, Vol. 34, 9-10, Jan. 1998.
doi:10.1049/el:19980114

3. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Soler, "Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal," Microwave Optical Technology Letter, 239-241, Nov. 2001.
doi:10.1002/mop.1407

4. Anguera, J., C. Puente, C. Borja, and J. Romeu, "Miniature wideband stacked patch antenna based on the Sierpinski fractal geometry," IEEE Antennas and Propagation International Symposium, Vol. 3, 1700-1703, Jul. 2000.

5. Bisht, N. and P. Kumar, "A dual band fractal circular microstrip patch antenna for C-band applications," PIERS Proceedings, 852-855, Sep. 2011.

6. Werner, D. H. and S. Gangly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine , Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650

7. Cohen, N., "Fractal antenna applications in wireless telecommunications," A Literature Study as Project for ECE 576, Illinois Institute of Technology, Dec. 2000.

8. Haykin, S., Neural Networks a Comprehensive Foundation, Macmillan Publishing Company, 1994.

9. Cichocki, A. and R. Unbehauen, "Neural Networks for Optimization and Signal Processing," J. Wiley & Sons, 1994.

10. Narayana, J. L., S. Krishna, and K. Reddy, "Design of microstrip antenna using artificial neural networks," International Conference on Computational Intelligence and Multimedia Applications, Vol. 1, 332-334, Dec. 2007.

11. Naser-Moghaddasi, M., P. D. Barjeoi, and A. Naghsh, "A heuristic artificial neural network for analyzing and synthesizing rect angular microstrip antenna," International Journal of Computer Science and Network Security, Vol. 7, 278-281, Dec. 2007.

12. Mishra, R. K. and A. Patnaik, "Designing rectangular patch antenna using the neurospectral method," IEEE Trans. Antennas and Propagation, Vol. 51, 1914-1921, Aug. 2003.
doi:10.1109/TAP.2003.814748

13. Singh, A. P. and J. Singh, "On the design of a rectangular microstrip antenna using ANN," National Journal of the Institution of Engineers, Vol. 90, 20-25, Jul. 2009.

14. Long, S. A. and M. Walton, "A dual-frequency stacked circulardisc antenna," IEEE Trans. Antennas and Propagation, Vol. 27, No. 2, 270-273, Mar. 1979.
doi:10.1109/TAP.1979.1142078

15. Singh, J., A. P. Singh, and T. S. Kamal, "Design and analysis of circular microstrip antennas using artificial neural networks," Proc. of International Conference on Artificial Intelligence and Pattern Recognition, 214-218, Jul. 2010.

16. Singh, J., A. P. Singh, and T. S. Kamal, "Estimation of feed position of a rectangular microsrip antenna using ANN," Journal of The Institution Of Engineers, Vol. 91, 20-25, Jul. 2010.

17. Karaboga, D., K. Guney, S. Sagiroglu, and M. Erler, "Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas," IEE Proceeding Microwaves, Antennas and Propagation, Vol. 146, No. 2, 155-159, Apr. 1999.
doi:10.1049/ip-map:19990136

18. Patnaik, S. S., D. C. Panda, and S. Devi, "Input impedance of rectangular microstrip patch antenna using artificial neural networks," Microwave and Optical Technology Letter, Vol. 32, 381-383, 2002.
doi:10.1002/mop.10184

19. Sagiroglu, S., K. Guney, and M. Erler, "Computation of radiation effciency for a resonant rectangular microstrip patch antenna using back propagation multilayered perceptrons," Journal of Electrical & Electronics, Vol. 3, 663-671, Dec. 2003.

20. Brinhole, E. R., J. F. Z. Destro, A. A. C. de Feritas, and N. P. de Alcantara, Jr., "Determinations of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks," PIERS Online, Vol. 1, No. 5, 579-582, 2005.
doi:10.2529/PIERS041210091305

21. Pal Gangawar, S., R. P. S. Gangawar, and B. K. Kanaujia, "Resonant frequency of circular microstrip antenna using artificial neural networks," National Journal of Radio and Space Physics, Vol. 37, 204-208, Jun. 2008.

22. Singh, J., A. P. Singh, and T. S. Kamal, "Artificial neural networks for estimation of directivity of circular microstrip patch antennas," International Journal of Engineering Sciences, Vol. 1, 159-167, Mar. 2011.

23. Devi, S., D. C. Panda, and S. S. Patnaik, "A novel method of using arti¯cial neural networks to calculate input impedance of circular microstrip antenna," International Symposium Antennas and Propagation Society, Vol. 3, 462-465, Jun. 2002.