Vol. 33
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-11-08
The Research on Short-Range Target Holographic Imaging Algorithm
By
Progress In Electromagnetics Research M, Vol. 33, 251-262, 2013
Abstract
Because the oversized, ultra short-range and arbitrary-shape goals cannot be imaged by Fourier transform algorithm, a Boundary Element Method(BEM) is presented for short-range millimeter wave holographic imaging.Through the discrete boundary integral equation, the discrete electromagnetic fields on the source surface and holographic surface are obtained. They are linked by a transfer matrix. Finally, the discrete electromagnetic fields obtain target holographic image. Due to the complexity of the transfer matrix, the Distributed Source Boundary Point Method (DSBPM) is introduced to calculate it, which greatly simplifies the calculation process. The simulation experiments of three-dimensional hemisphere imaging show the sensitivity of the imaging algorithm to test error, and regularization method has been proposed. The actual measurement of the four small metal balls verifies the validity of the imaging algorithm for large target imaging. The imaging results show that holographic imaging of the boundary element method can obtain high resolution and high amplitude accuracy.
Citation
Li Zhu, Xing-Guo Li, and Ben-Qing Wang, "The Research on Short-Range Target Holographic Imaging Algorithm," Progress In Electromagnetics Research M, Vol. 33, 251-262, 2013.
doi:10.2528/PIERM13090603
References

1. McMakin, D. L., P. E. Keller, D. M. Sheen, et al. "Dual surface dielectric depth detector for holographic millimeter-wave security scanners ," SPIE Proceeding, Vol. 7309, No. 73090G, 1-10, 2009.

2. Sheen, D. M., D. L. McMakin, W. M. Lechelt, et al. "Circularly polarized millimeter-wave imaging for personnel screening," SPIE Proceeding, Vol. 5789, 117-126, 2005.
doi:10.1117/12.606825

3. Sheen, D. M., T. E. Hall, R. H. Severtsen, et al. "Active wideband 350 GHz imaging system for concealed-weapon detection," SPIE Proceeding, Vol. 7309, No. 73090I, 1-10, 2009.

4. McMakin, D. L., D. M. Sheen, and T. E. Hall, "Biometric identi¯cation using holographic radar imaging techniques," SPIE Proceeding, Vol. 6538, No. 65380C, 1-12, 2007.

5. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Cylindrical millimeter wave imaging technique and applications," SPIE Proceeding, Vol. 6211, No. 62110A, 1-10, 2006.

6. Keller, P. E., D. L. McMakin, and D. M. Sheen, "Privacy algo-rithm for cylindrical holographic weapons surveillance system," IEEE Aerospace and Electronic Systems Magazine, Vol. 15, No. 2, 17-24, 2000.
doi:10.1109/62.825667

7. Lettington, A. H., M. P. Rollason, and S. Tzimopoulou, "Image restoration using a two dimensional Lorentzian probability model ," Journal of Modern Optics, Vol. 47, No. 5, 931-938, 2000.

8. Zhang, S. Y. and X. Z. Chen, "The boundary point method for the calculation of exterior acoustic radiation problem," Journal of Sound and Vibration, Vol. 228, No. 4, 761-772, 1999.
doi:10.1006/jsvi.1999.2442

9. Bi, C. X., "Theoretical and experimental study on the distributed source boundary point method based near field acoustic holography," Hefei University of Technology Doctoral Thesis, 35-51, 2004.

10. Xu, L., X.-Z. Chen, C.-X. Bi, et al. "Near field acoustic holography resolution enhancing method based on interpolation using orthogonal spherical wave source ," Journal of Zhejiang University (Engineering Science), Vol. 43, No. 10, 1808-1811, 2009.

11. Deng, J.-H., X.-D. Liu, and Y.-C. Shan, "Research on evanescent wave and propagation wave in sound field and the improved acoustic holography method," Technical Acoustics, Vol. 28, No. 5, 565-571, 2009.

12. Zhang, L. X., N. J. Li, S.-F. Hu, et al. "Radar Scattering and Imaging Diagnostic Testing," China Astronautics Press, 145-220, 2009.