1. Gaunt, R. A. and A. Prochazka, "Control of urinary bladder function with devices: Successes and failures," Progress in Brain Research, Vol. 152, 163-194, 2006.
doi:10.1016/S0079-6123(05)52011-9
2. Winfree, C. J., "Spinal cord stimulation for the relief of chronic pain," Curr. Surg., Vol. 62, No. 5, 476-481, Sep. 2005.
doi:10.1016/j.cursur.2005.03.008
3. Benabid, A. L., P. Pollak, C. Gervason, D. Hoffmann, D. M. Gao, et al. "Long term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus," The Lancet, Vol. 337, 403-406, Feb. 1991.
doi:10.1016/0140-6736(91)91175-T
4. Theodore, W. H., "Brain stimulation for epilepsy," Nat. Clin. Pract. Neurol., Vol. 1, No. 2, 64-65, Dec. 2005.
doi:10.1038/ncpneuro0051
5. Thomas Jr., C. A., P. A. Springer, G. E. Loeb, Y. Berwald-Netter, and L. M. Okun, "A miniature microelectrode array to monitor the bioelectric activity of cultured cells," Experiment. Cell Res., Vol. 74, No. 1, 61-66, 1972.
doi:10.1016/0014-4827(72)90481-8
6. Wise, K. D., J. B. Angell, and A. Starr, "An integrated-circuit approach to extracellular microelectrodes," IEEE Trans. Biomed. Eng., Vol. 17, No. 3, 238-247, Mar. 1970.
doi:10.1109/TBME.1970.4502738
7. Buzsaki, G., "Large-scale recording of neuronal ensembles," Nature Neurosci., Vol. 7, No. 5, 446-451, May 2004.
doi:10.1038/nn1233
8. Wang, Z. G., X. S. Gu, X. Y. Lu, Z. L. Jiang, W. Y. Li, G. M. Lu, Y. F. Wang, X. Y. Shen, X. T. Zhao, H. L. Wang, Z. Y. Zhang, and et al, "Microelectronics-embedded channel bridging and signal regeneration of injured spinal cords," Progress in Natural Science, Vol. 19, No. 10, 1261-1269, Oct. 2009.
doi:10.1016/j.pnsc.2009.02.005
9. Gross, G. W., A. N. Williams, and J. H. Lucas, "Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture," J. Neurosci. Methods, Vol. 5, No. 1--2, 13-22, Jan. 1982.
doi:10.1016/0165-0270(82)90046-2
10. Novak, J. L. and B. C. Wheeler, "Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array," J. Neurosci. Methods, Vol. 23, No. 2, 149-159, Mar. 1988.
doi:10.1016/0165-0270(88)90187-2
11. Charvet, G., L. Rousseau, O. Billoint, S. Gharbi, J. Rostaing, et al. "A 256-channel microelectrode array (MEA) system with integrated electronics for recording and stimulation of neural networks," Society for Neuroscience 37th Annual Meeting, San Diego, California, 171-174, USA 2007.
12. Billoint, O., J. P. Rostaing, G. Charvet, and B. Yvert, "A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays," Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1, 6070-6073, 2007.
13. Branner, A., R. B. Stein, and R. A. Normann, "Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes," J. Neurophysiol, Vol. 85, 1585-1594, 2001.
14. McCreery, D., A. Lossinsky, V. Pikov, and X. D. Liu, "Microelectrode array for chronic deep-brain microstimulation and recording," IEEE Trans. Biomed. Eng., Vol. 53, No. 4, 726-737, Apr. 2006.
doi:10.1109/TBME.2006.870215
15. Smit, J. P. A., W. L. C. Rutten, and H. B. K. Boom, "Endoneural selective stimulating using wire-microelectrode arrays," IEEE Trans. Biomed. Eng., Vol. 7, No. 4, 399-412, Dec. 1999.
16. Campbell, P. K., K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, "A silicon-based, three-dimensional neural interface: Manufacturing processes for an intracortical electrode array," IEEE Trans. Biomed. Eng., Vol. 38, No. 8, 758-768, Aug. 1991.
doi:10.1109/10.83588
17. Song, Y. K., W. R. Patterson, C. W. Bull, J. Beals, N. Hwang, A. P. Deangelis, C. Lay, J. L. McKay, A. V. Nurmikko, M. R. Fellows, and et al, "Development of a chipscale integrated microelectrode/microelectronic de-vice for brain implantable neuroengineering applications," IEEE Tans. Neural. System and Rehabilitation Eng., Vol. 13, No. 2, 220-226, Jun. 2005.
doi:10.1109/TNSRE.2005.848337
18. Hoogerwerf, A. C. and K. D. Wise, "A three-dimensional microelectrode array for chronic neural recording," IEEE Trans. Biomed. Eng., Vol. 41, No. 12, 1136-1146, Dec. 1994.
doi:10.1109/10.335862
19. Aziz, J. N. Y., R. Genov, B. L. Bardakjian, M. Derchansky, and P. L. Carlen, "Brain-silicon interface for high-resolution in vitro neural recording," IEEE Tans. Biomedical Circuits and Systems, Vol. 1, No. 1, 56-62, Mar. 2007.
doi:10.1109/TBCAS.2007.893181
20. Wang, R. X., X. J. Huang, G. F. Liu, W. Wang, F. T. Dong, and Z. H. Li, "Fabrication and characterization of a parylene-based three-dimensional microelectrode array for use in retinal prosthesis," Journal of Microelectromechanical Systems, Vol. 19, No. 2, 367-374, Apr. 2010.
doi:10.1109/JMEMS.2009.2039773
21. Huber, D., L. Petreanu, N. Ghitani, S. Ranade, T. Hromadka, et al. "Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice," Nature, Vol. 451, No. 7174, 61-64, Jan. 2008.
doi:10.1038/nature06445
22. Houweling, A. R. and M. Brecht, "Behavioural report of single neuron stimulation in somatosensory cortex," Nature, Vol. 451, 65-68, Jan. 2008.
doi:10.1038/nature06447
23. Grumet, A. E., J. L. Wyatt, Jr, and J. F. Rizzo, "Multi-electrode stimulation and recording in the isolated retina," J. Neurosci. Methods, Vol. 101, No. 1, 31-42, Aug. 2000.
doi:10.1016/S0165-0270(00)00246-6
24. Rattay, F. and S. Resatz, "Dipole distance for minimum threshold current to stimulate unmyelinated axons with microelectrodes," IEEE Trans. Biomed. Eng., Vol. 54, No. 1, 158-162, Jan. 2007.
doi:10.1109/TBME.2006.883730
25. Holsheimer, J. and W. A. Wesselink, "Optimum electrode geometry for spinal cord stimulation: The narrow bipole and tripole," Med. Biol. Eng. Comput., Vol. 35, No. 5, 493-497, Sep. 1997.
doi:10.1007/BF02525529
26. Rattay, F. and S. Resatz, "Effective electrode configuration for selective stimulation with inner eye prostheses," IEEE Trans. Biomed. Eng., Vol. 51, No. 9, 1659-1664, Sep. 2004.
doi:10.1109/TBME.2004.828044
27. Meier, J. H., W. L. Rutten, A. E. Zoutman, H. B. Boom, and P. Bergveld, "Simulation of multipolar fiber selective neural stimulation using intrafascicular electrodes," IEEE Trans. Biomed. Eng., Vol. 39, No. 2, 122-134, Feb. 1992.
doi:10.1109/10.121643
28. Schnabel, V. and J. J. Struijk, "Evaluation of the cable model for electrical stimulation of unmyelinated nerve fibers," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1027-1033, Sep. 2001.
doi:10.1109/10.942593
29. Fromherz, P., "Sheet conductor model of brain slices for stimulation and recording with planar electronic contacts," Eur. Biophys. J., Vol. 31, No. 3, 228-231, Apr. 2002.
doi:10.1007/s00249-002-0213-7
30. Church, P., A. Leduc, R. A. Beique, and J. R. Derome, "A numerical solution of cylindrical coordinate Laplace's equation with mixed boundary conditions along the axis of symmetry: Application to intracerebral stimulating electrodes," J. Appl. Phys., Vol. 56, No. 1, 1-5, 1984.
doi:10.1063/1.333752
31. Altman, K. W. and R. Plonsey, "Development of a model for point source electrical fibre bundle stimulation," Med. Biol. Eng. Comput, Vol. 26, No. 5, 466-475, Sep. 1988.
doi:10.1007/BF02441913
32. Buitenweg, J. R., W. L. Rutten, and E. Marani, "Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact," IEEE Trans. Biomed. Eng., Vol. 49, No. 12, 1591-1599, Dec. 2002.
doi:10.1109/TBME.2002.804504
33. McIntyre, C. C., W. M. Grill, D. L. Sherman, and N. V. Thakor, "Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition," J. Neurophysiol., Vol. 91, No. 4, 1457-1469, Apr. 2004.
doi:10.1152/jn.00989.2003
34. Struijk, J. J., J. Holsheimer, and H. B. Boom, "Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study," IEEE Trans. Biomed. Eng., Vol. 40, No. 7, 632-639, Jul. 1993.
doi:10.1109/10.237693
35. Laudani, A., S. Coco, and F. R. Fulginei, "Finite element model of charge transport across ionic channels," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 32, No. 6, 1845-1854, 2013.
doi:10.1108/COMPEL-10-2012-0282
36. Buitenweg, J. R., W. L. C. Rutten, and E. Marani, "Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode," IEEE Trans. Biomed. Eng., Vol. 50, No. 4, 501-509, Apr. 2003.
doi:10.1109/TBME.2003.809486
37. Buitenweg, J. R., W. L. C. Rutten, and E. Marani, "Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes," IEEE Trans. Biomed. Eng., Vol. 49, No. 11, 1580-1590, Nov. 2002.
doi:10.1109/TBME.2002.805555
38. Heuschkel, M. O., M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, "A three-dimensional multi-electrode array for multisite stimulation and recording in acute brain slices," J. Neurosci. Methods, Vol. 114, 135-148, 2002.
doi:10.1016/S0165-0270(01)00514-3
39. Joucla, S. and B. Yvert, "Improved focalization of electrical microstimulation using microelectrode arrays: A modeling study," PLOS ONE, Vol. 4, No. 3, e4828, 2009.
doi:10.1371/journal.pone.0004828
40. Joucla, S., P. Branchereau, D. Cattaert, and B. Yvert, "Extracellular neural microstimulation may activate much larger regions than expected by simulations: A combined experimental and modeling study," PLOS ONE, Vol. 7, No. 8, 41324, 2012.
doi:10.1371/journal.pone.0041324
41. Moulin, C., A. Gliµere, D. Barbier, S. Joucla, B. Yvert, P. Mailley, and R. Guillemaud, "A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential," IEEE Trans. Biomed. Eng., Vol. 55, No. 2, 683-692, Feb. 2008.
doi:10.1109/TBME.2007.903522
42. Hodgkin, A. L. and A. F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve," J. Physiol., Vol. 117, 500-544, 1952.
43. Mainen, Z. F., J. Joerges, J. R. Huguenard, and T. J. Sejnowski, "A model of spike initiation in neocortical pyramidal neurons," Neuron, Vol. 15, 1427-1439, 1995.
doi:10.1016/0896-6273(95)90020-9
44. Lindsay, K. A., J. R. Rosenberg, and G. Tucker, "From Maxwell's equations to the cable equation and beyond," Progr. Biophys. Molecul. Biol., Vol. 85, No. 1, 71-116, May 2004.
doi:10.1016/j.pbiomolbio.2003.08.001
45. Mofftt, M. A. and C. C. McIntyre, "Model-based analysis of cortical recording with silicon microelectrodes," Clin. Neurophysiol., Vol. 116, No. 9, 2240-2250, Sep. 2005.
doi:10.1016/j.clinph.2005.05.018
46. Holt, G. R. and C. Koch, "Electrical interactions via the extracellular potential near cell bodies," J. Comput. Neurosci., Vol. 6, No. 2, 169-184, Mar. 1999.
doi:10.1023/A:1008832702585
47. Claverol-Tinture, E. and J. Pine, "Extracellular potentials in low-density dissociated neuronal cultures," J. Neurosci. Methods, Vol. 117, 13-21, 2002.
doi:10.1016/S0165-0270(02)00043-2
48. Brown, P. N., A. C. Hindmarsh, and L. R. Petzold, "Using Krylov methods in the solution of large-scale differential-algebraic systems," SIAM J. Scientif. Comput., Vol. 15, No. 6, 1467-1488, 1994.
doi:10.1137/0915088
49. McHardy, J., D. Geller, and S. B. Brummer, "An approach to corrosion control during electrical stimulation," Ann. Biomed. Eng., Vol. 5, No. 2, 144-149, Jun. 1977.
doi:10.1007/BF02364014
50. McCreery, D. B., W. F. Agnew, T. G. Yuen, and L. Bullara, "Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation," IEEE Trans. Biomed. Eng., Vol. 37, No. 10, 996-1001, Oct. 1990.
doi:10.1109/10.102812
51. Pudenz, R. H., L. A. Bullara, S. Jacques, and F. T. Hambrecht, "Electrical stimulation of the brain. III. The neural damage model," Surg. Neurol., Vol. 4, No. 4, 389-400, Oct. 1975.