1. Reid, M. T. H., A. W. Rodriguez, J. White, and S. G. Johnson, "Efficient computation of casimir interactions between arbitrary 3D objects," Phys. Rev. Lett., Vol. 103, 2009.
doi:10.1103/PhysRevLett.103.040401
2. Reid, M. T. H., J. White, and S. G. Johnson, "Computation of casimir interactions between arbitrary three-dimensional objects with arbitrary material properties," Phys. Rev. A, Vol. 84, 2011.
doi:10.1103/PhysRevA.84.010503
3. Van Kampen, N. G., B. R. A. Nijboer, and K. Schram, "On the macroscopic theory of van derWaals forces," Phys. Lett., Vol. 26A, 307, 1968.
4. Qian, Z.-G. and W. C. Chew, "Fast full-wave surface integral equation solver for multiscale structure modeling," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3594-3601, Nov. 2009.
doi:10.1109/TAP.2009.2023629
5. Li, H. and M. Kardar, "Fluctuation-induced forces between rough surfaces," Phys. Rev. Lett., Vol. 67, No. 23, 3275-3278, 1991.
doi:10.1103/PhysRevLett.67.3275
6. Chew, W. C., M. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, USA, 2009.
7. Barash, Y. S. and V. L. Ginzburg, "Electromagnetic fluctuations in matter and molecular (van-der-Waals) forces between them," Sov. Phys. Usp., Vol. 18, No. 5, 305-322, 1975.
doi:10.1070/PU1975v018n05ABEH001958
8. Milonni, P. W., The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic Press, San Diego, CA, 1994.
9. Langbein, D., "The macroscopic theory of van der Waals attraction," Solid State Comm., Vol. 12, 853-855, 1973.
doi:10.1016/0038-1098(73)90093-8
10. Schram, K., "On the macroscopic theory of retarded van der Waals forces," Phys. Lett., Vol. 43A, No. 3, 282-284, 1973.
11. Lambrecht, A. and V. N. Marachevsky, "New geometries in the casimir effect: Dielectric gratings," J. Phys. Conf. Ser., Vol. 161, 1-8, 2009.
12. Ginzburg, V. L., Theoretical Physics and Astrophysics, Pergamon Press, New York, 1979.
13. Lamoreaux, S. K., "The casimir force: Background, experiments, and applications," Rep. Prog. Phys., Vol. 68, 201-236, 2005.
doi:10.1088/0034-4885/68/1/R04
14. Rosa, F. S. S., D. A. R. Dalvit, and P. Milonni, "Electromagnetic energy, absorption, and casimir forces: Uniform dielectric media in thermal equilibrium," Phys. Rev. A, Vol. 81, 033812, 2010.
doi:10.1103/PhysRevA.81.033812
15. Rosa, F. S. S., D. A. R. Dalvit, and P. Milonni, "Electromagnetic energy, absorption, and casimir forces. II. Inhomogeneous dielectric media," Phys. Rev. A, Vol. 84, 053813, 2011.
doi:10.1103/PhysRevA.84.053813
16. Sernelius, B. E., "Casimir force and complications in the Van Kampen theory for dissipative systems," Phys. Rev. B, Vol. 74, 233103, 2006.
doi:10.1103/PhysRevB.74.233103
17. Intravaia, F. and R. Behunin, "Casimir effect as a sum over modes in dissipative system," Phys. Rev. A, Vol. 86, 062517, 2012.
doi:10.1103/PhysRevA.86.062517
18. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.
19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818
20. Jiang, L. J. and W. C. Chew, "The mixed-form fast multipole algorithm for broadband electromagnetic simulations," Antennas and Propagation Society International Symposium, 180-183, 2005.
21. Poggio, A. J. and E. K. Miller, Integral Equation Solutions of Three Dimensional Scattering Problems, R. Mittra, Ed., Permagon, Elmsford, NY, 1973.
22. Chang, Y. and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propag. , Vol. 25, 789-795, 1977.
doi:10.1109/TAP.1977.1141685
23. Wu, T. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1977.
doi:10.1029/RS012i005p00709
24. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1383-1398, 1994.
doi:10.1364/JOSAA.11.001383
25. Chew, W. C. and L. E. Sun, "A novel formulation of the volume integral equation for electromagnetic scattering," Waves in Random and Complex Media, Vol. 19, No. 1, 162-180, 2009.
doi:10.1080/17455030802625427
26. Chew, W. C., J. L. Xiong, and M. A. Saville, "A matrix-friendly formulation of layered medium Green's function," IEEE Antennas Wireless Propag. Lett., Vol. 5, 490-494, 2006.
doi:10.1109/LAWP.2006.886306