Vol. 142
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-27
Casimir Force for Arbitrary Objects Using the Argument Principle and Boundary Element Methods
By
Progress In Electromagnetics Research, Vol. 142, 615-624, 2013
Abstract
Recent progress in the simulation of Casimir forces between various objects has allowed traditional computational electromagnetic solvers to be used to find Casimir forces in arbitrary three-dimensional objects. The underlying theory to these approaches requires knowledge and manipulation of quantum field theory and statistical physics. We present a calculation of the Casimir force using the method of moments via the argument principle. This simplified derivation allows greater freedom in the moment matrix where the argument principle can be used to calculate Casimir forces for arbitrary geometries and materials with the use of various computational electromagnetic techniques.
Citation
Phillip R. Atkins, Qi Dai, Wei E. I. Sha, and Weng Cho Chew, "Casimir Force for Arbitrary Objects Using the Argument Principle and Boundary Element Methods," Progress In Electromagnetics Research, Vol. 142, 615-624, 2013.
doi:10.2528/PIER13082105
References

1. Reid, M. T. H., A. W. Rodriguez, J. White, and S. G. Johnson, "Efficient computation of casimir interactions between arbitrary 3D objects," Phys. Rev. Lett., Vol. 103, 2009.
doi:10.1103/PhysRevLett.103.040401

2. Reid, M. T. H., J. White, and S. G. Johnson, "Computation of casimir interactions between arbitrary three-dimensional objects with arbitrary material properties," Phys. Rev. A, Vol. 84, 2011.
doi:10.1103/PhysRevA.84.010503

3. Van Kampen, N. G., B. R. A. Nijboer, and K. Schram, "On the macroscopic theory of van derWaals forces," Phys. Lett., Vol. 26A, 307, 1968.

4. Qian, Z.-G. and W. C. Chew, "Fast full-wave surface integral equation solver for multiscale structure modeling," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3594-3601, Nov. 2009.
doi:10.1109/TAP.2009.2023629

5. Li, H. and M. Kardar, "Fluctuation-induced forces between rough surfaces," Phys. Rev. Lett., Vol. 67, No. 23, 3275-3278, 1991.
doi:10.1103/PhysRevLett.67.3275

6. Chew, W. C., M. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, USA, 2009.

7. Barash, Y. S. and V. L. Ginzburg, "Electromagnetic fluctuations in matter and molecular (van-der-Waals) forces between them," Sov. Phys. Usp., Vol. 18, No. 5, 305-322, 1975.
doi:10.1070/PU1975v018n05ABEH001958

8. Milonni, P. W., The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic Press, San Diego, CA, 1994.

9. Langbein, D., "The macroscopic theory of van der Waals attraction," Solid State Comm., Vol. 12, 853-855, 1973.
doi:10.1016/0038-1098(73)90093-8

10. Schram, K., "On the macroscopic theory of retarded van der Waals forces," Phys. Lett., Vol. 43A, No. 3, 282-284, 1973.

11. Lambrecht, A. and V. N. Marachevsky, "New geometries in the casimir effect: Dielectric gratings," J. Phys. Conf. Ser., Vol. 161, 1-8, 2009.

12. Ginzburg, V. L., Theoretical Physics and Astrophysics, Pergamon Press, New York, 1979.

13. Lamoreaux, S. K., "The casimir force: Background, experiments, and applications," Rep. Prog. Phys., Vol. 68, 201-236, 2005.
doi:10.1088/0034-4885/68/1/R04

14. Rosa, F. S. S., D. A. R. Dalvit, and P. Milonni, "Electromagnetic energy, absorption, and casimir forces: Uniform dielectric media in thermal equilibrium," Phys. Rev. A, Vol. 81, 033812, 2010.
doi:10.1103/PhysRevA.81.033812

15. Rosa, F. S. S., D. A. R. Dalvit, and P. Milonni, "Electromagnetic energy, absorption, and casimir forces. II. Inhomogeneous dielectric media," Phys. Rev. A, Vol. 84, 053813, 2011.
doi:10.1103/PhysRevA.84.053813

16. Sernelius, B. E., "Casimir force and complications in the Van Kampen theory for dissipative systems," Phys. Rev. B, Vol. 74, 233103, 2006.
doi:10.1103/PhysRevB.74.233103

17. Intravaia, F. and R. Behunin, "Casimir effect as a sum over modes in dissipative system," Phys. Rev. A, Vol. 86, 062517, 2012.
doi:10.1103/PhysRevA.86.062517

18. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

20. Jiang, L. J. and W. C. Chew, "The mixed-form fast multipole algorithm for broadband electromagnetic simulations," Antennas and Propagation Society International Symposium, 180-183, 2005.

21. Poggio, A. J. and E. K. Miller, Integral Equation Solutions of Three Dimensional Scattering Problems, R. Mittra, Ed., Permagon, Elmsford, NY, 1973.

22. Chang, Y. and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propag. , Vol. 25, 789-795, 1977.
doi:10.1109/TAP.1977.1141685

23. Wu, T. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1977.
doi:10.1029/RS012i005p00709

24. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1383-1398, 1994.
doi:10.1364/JOSAA.11.001383

25. Chew, W. C. and L. E. Sun, "A novel formulation of the volume integral equation for electromagnetic scattering," Waves in Random and Complex Media, Vol. 19, No. 1, 162-180, 2009.
doi:10.1080/17455030802625427

26. Chew, W. C., J. L. Xiong, and M. A. Saville, "A matrix-friendly formulation of layered medium Green's function," IEEE Antennas Wireless Propag. Lett., Vol. 5, 490-494, 2006.
doi:10.1109/LAWP.2006.886306