Vol. 142
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-23
Static Magnetic Field Concentration and Enhancement Using Magnetic Materials with Positive Permeability
By
Progress In Electromagnetics Research, Vol. 142, 579-590, 2013
Abstract
In this paper a novel compressor for static magnetic fields is proposed based on finite embedded transformation optics. When the DC magnetic field passes through the designed device, the magnetic field can be compressed inside the device. After it passes through the device, one can obtain an enhanced static magnetic field behind the output surface of the device (in a free space region). We can also combine our compressor with some other structures to get a higher static magnetic field enhancement in a free space region. In contrast with other devices based on transformation optics for enhancing static magnetic fields, our device is not a closed structure and thus has some special applications (e.g., for controlling magnetic nano-particles for gene and drug delivery). The designed compressor can be constructed by using currently available materials or DC meta-materials with positive permeability. Numerical simulation verifies good performance of our device.
Citation
Fei Sun, and Sailing He, "Static Magnetic Field Concentration and Enhancement Using Magnetic Materials with Positive Permeability," Progress In Electromagnetics Research, Vol. 142, 579-590, 2013.
doi:10.2528/PIER13082102
References

1. Brown, M. A. and R. C. Semelka, RI: Basic Principles and Applications, Wiley-Blackwell, 2010.

2. Kobayashi, M. and A. Pascual-Leone, "Transcranial magnetic stimulation in neurology," Lancet Neurology, Vol. 2, No. 3, 145-156, 2003.
doi:10.1016/S1474-4422(03)00321-1

3. Veiseh, O., J. W. Gunn, and M. Zhang, "Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging," Advanced Drug Delivery Reviews, Vol. 62, No. 3, 284-304, 2010.
doi:10.1016/j.addr.2009.11.002

4. Dobson, J., "Magnetic micro- and nano-particle-based targeting for drug and gene delivery," Nanomedicine, Vol. 1, No. 1, 31-37, 2006.
doi:10.2217/17435889.1.1.31

5. Ripka, P. and M. Janosek, "Advances in magnetic field sensors," IEEE Sens. J., Vol. 10, No. 6, 1108-1116, 2010.
doi:10.1109/JSEN.2010.2043429

6. Zhang, Z. Y., S. Matsumoto, S. Choi, R. Teranishi, and T. Kiyoshi, "Comparison of different configurations of NbTi magnetic lenses," Supercond. Sci. Technol., Vol. 24, No. 10, 105012, 2011.
doi:10.1088/0953-2048/24/10/105012

7. Zhang, Z. Y., S. Choi, S. Matsumoto, R. Teranishi, G. Giunchi, A. F. Albisetti, and T. Kiyoshi, "Magnetic lenses using different MgB2 bulk superconductors," Supercond. Sci. Technol., Vol. 25, No. 2, 025009, 2012.
doi:10.1088/0953-2048/25/2/025009

8. Zhang, Z. Y., S. Matsumoto, S. Choi, R. Teranishi, and T. Kiyoshi, "A new structure for a magnetic field concentration using NiTb sheet superconductors," Physica C, Vol. 471, 1547-1549, 2011.
doi:10.1016/j.physc.2011.05.235

9. Kiyoshi, T., S. Choi, S. Matsumoto, T. Asano, and D. Uglietti, "Magnetic flux concentrator using Gd-Ba-Cu-O bulk superconductors," IEEE Transections on Applied Superconductivity, Vol. 19, No. 3, 2174-2177, 2009.
doi:10.1109/TASC.2009.2018440

10. Leonhardt, U. and T. G. Philbin, Geometry and Light: Science of Invisibility, Dover, 2010.

11. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

12. Magnus, F., B. Wood, J. Moore, K. Morrison, G. Perkins, . Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A DC magnetic metamaterial," Nature Materials, Vol. 7, 295-297, 2008.
doi:10.1038/nmat2126

13. Yang, F., Z. L. Mei, and T. Y. Jin, "DC electric invisibility cloak," Phys. Rev. Lett., Vol. 109, 053902, 2012.
doi:10.1103/PhysRevLett.109.053902

14. Gomory, F., M. Solovyov, J. ·Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak,", Vol. 335, No. 6075, 1466-1468, 2012.

15. Jiang, W. X., C. Y. Luo, H. F. Ma, Z. L. Mei, and T. J. Cui, "Enhancement of current density by DC electric concentrator," Scientific Reports, Vol. 2, 956, 2012.

16. Navau, C., J. Prat-Camps, and A. Sanchez, "Magnetic energy harvesting and concentration at a distance by transformation optics," Phys. Rev. Lett., Vol. 109, 263903, 2012.
doi:10.1103/PhysRevLett.109.263903

17. Sun, F. and S. He, "Create a uniform static magnetic field over 50T in a large free spcae region," Progress In Electromagnetics Research, Vol. 137, 149-157, 2013.

18. Chen, H. S., L. Huang, and X. X. Cheng, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

19. Zhang, P., Y. Jin, and S. He, "Inverse transformation optics and reflection analysis for two-dimensional finite-embedded coordinate transformation," IEEE J. Sel. Top. Quant. Electron., Vol. 16, 427, 2010.
doi:10.1109/JSTQE.2009.2031163

20. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903

21. Kwon, D. H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Opt. Express, Vol. 16, No. 23, 18731-18738, 2008.
doi:10.1364/OE.16.018731

22. Rahm, M., D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express, Vol. 16, No. 15, 11555-11567, 2008.
doi:10.1364/OE.16.011555

23. The finite element simulation is conducted by using commercial software COMSOL Multiphysics, http://www.comsol.com/ and AC/DC model has been chosen to simulate the static magnetic field, , External feld boundary condition has been used to mimic a unifor-m background static magnetic field from the outside of the, domain imposed onto the designed device. For the mesh size, we have used more than 10000 elements per square meter in, each case of our simulations.