Vol. 33
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-10-17
Frequency Dependent Characteristics of Grounding System Buried in Multilayered Earth Model Based on Quasi-Static Electromagnetic Field Theory
By
Progress In Electromagnetics Research M, Vol. 33, 169-183, 2013
Abstract
The frequency dependent characteristics of grounding system buried in half homogenous earth model have been discussed before; however, the importance of mutual inductive and capacitive effects on the grounding problems in both frequency and time domains is unclear. In order to study the importance of the mutual inductive, capacitative and conductive effects on the grounding problem in both frequency and time domains, hybrid method, which is a hybrid of Galerkin's method of moment and conventional nodal analysis method, has been used to study the dominant factor among the mutual inductive, capacitive and conductive effects in the paper.
Citation
Zhong Xin Li, Yu Yin, Cui-Xia Zhang, and Liu-Cun Zhang, "Frequency Dependent Characteristics of Grounding System Buried in Multilayered Earth Model Based on Quasi-Static Electromagnetic Field Theory," Progress In Electromagnetics Research M, Vol. 33, 169-183, 2013.
doi:10.2528/PIERM13081903
References

1. Grcev, L. and M. Heimbach, "Frequency dependent and transient characteristics of substation grounding system," IEEE Transactions on Power Delivery, Vol. 12, No. 1, 172-178, Jan. 1997.
doi:10.1109/61.568238

2. Papalexopoulos, A. D. and A. P. Meliopoulos, "Frequency dependent characteristics of grounding systems," IEEE Transactions on Power Delivery, Vol. 2, No. 4, 1073-1081, Oct. 1987.
doi:10.1109/TPWRD.1987.4308223

3. Huang, L. and D. G. kasten, "Model of ground grid and metallic conductor currents in high voltage a.c. substations for the computation of electromagnetic fields," Electric Power Systems Research, Vol. 59, 31-37, 2001.
doi:10.1016/S0378-7796(01)00112-2

4. Zhang, B., X. Cui, Z. B. Zhao, and J. L. He, "Numerical analysis of the influence between large grounding grids and two-end grounded cables by the moment method coupled with circuit equations," IEEE Transactions on Power Delivery, Vol. 20, No. 2, 731-737, 2005.
doi:10.1109/TPWRD.2005.844303

5. Takashime, T., T. Nakae, and R. Ishibashi, "High frequency characteristic of impedance to ground and field distributions of ground electrodes," IEEE Transactions on Power Apparatus and Systems, Vol. 100, No. 4, 1893-1900, Apr. 1981.
doi:10.1109/TPAS.1981.316532

6. Ramamoorty, M., M. M. B. Narayanan, S. Parameswaran, and D. Mukhedkar, "Transient performance of grounding grids," IEEE Transactions on Power Delivery, Vol. 4, No. 4, 2053-2059, Oct. 1989.
doi:10.1109/61.35630

7. Liew, A. C. and M. Darveniza, "Dynamic model of impulse characteristics of concentrated earths," Proc. Inst. Elect. Eng., Vol. 121, 123-135, Feb. 1974.
doi:10.1049/piee.1974.0022

8. Wang, J., A. C. Liew, and M. Darveniza, "Extension of dynamic model of impulse behavior of concentrated grounds at high currents," IEEE Transactions on Power Delivery, Vol. 20, No. 3, 2160-2165, Jul. 2005.
doi:10.1109/TPWRD.2004.839645

9. Geri, A., "Behaviour of grounding systems excited by high impulse currents: The model and its validation," IEEE Transactions on Power Delivery, Vol. 14, No. 3, 1008-1017, Jul. 1999.
doi:10.1109/61.772347

10. Devgan, S. S. and E. R. Whitehead, "Analytical models for distributed grounding systems," IEEE Transactions on Power Apparatus and Systems, Vol. 92, No. 5, 1763-1770, Sep./Oct. 1973.

11. Verma, R. and D. Mukhedkar, "Impulse impedance of buried ground wire," IEEE Transactions on Power Apparatus and Systems, Vol. 99, No. 5, 2003-2007, Sep./Oct. 1980.

12. Mazzetti, C. and G. M. Veca, "Impulse behavior of grounded electrodes," IEEE Transactions on Power Apparatus and Systems, Vol. 102, No. 9, 3148-3156, Sep. 1983.
doi:10.1109/TPAS.1983.318122

13. Velazquez, R. and D. Mukhedkar, "Analytical modeling of grounding electrodes," IEEE Transactions on Power Apparatus and Systems, Vol. 103, No. 6, 1314-1322, Jun. 1984.
doi:10.1109/TPAS.1984.318465

14. Menter, F. and L. Grcev, "EMTP-based model for grounding system analysis," IEEE Transactions on Power Delivery, Vol. 9, No. 4, 1838-1849, Oct. 1994.
doi:10.1109/61.329517

15. Liu, Y., M. Zitnik, and R. Thottappillil, "An improved transmission-line model of grounding system," IEEE Transactions on Electromagnetcs Compatibility, Vol. 43, No. 3, 348-355, Aug. 2001.
doi:10.1109/15.942606

16. Liu, Y., N. Theethayi, and R. Thottappillil, "An engineering model for transient analysis of grounding system under lightning strikes: Nonuniform transmission-line approach," IEEE Transactions on Power Delivery, Vol. 20, No. 2, 722-730, Apr. 2005.
doi:10.1109/TPWRD.2004.843437

17. Roubertou, D., J. Fontaine, J. P. Plumey, and A. Zeddam, "Harmonic input impedance of earth connections," Proc. IEEE Int. Symp. Electromagnetic Compatibility, 717-720, 1984.

18. Dawalibi, F. and A. Selby, "Electromagnetic fields of enigized conductors," IEEE Transactions on Power Delivery, Vol. 8, No. 3, 1275-1284, Jul. 1986.
doi:10.1109/61.252653

19. Grcev, L. and Z. Haznadar, "A novel technique of numerical modelling of impulse current distribution in grounding systems," Proc. Int. Conf. on Lightning Protection, 165-169, Graz, Austria, 1988.

20. Grcev, L. and F. Dawalibi, "An electromagnetic model for transients in grounding systems," IEEE Transactions on Power Delivery, Vol. 5, No. 4, 1773-1781, Oct. 1990.
doi:10.1109/61.103673

21. Grcev, L., "Computation of transient voltages near complex grounding systems caused by lightning currents," Proc. IEEE Int. Symp. Electromagnetic Compatibility, 393-400, 1992.
doi:10.1109/ISEMC.1992.626123

22. Grcev, L., "Computer analysis of transient voltages in large grounding systems," IEEE Transactions on Power Delivery, Vol. 11, No. 2, 815-823, Apr. 1996.
doi:10.1109/61.489339

23. Olsen, R. and M. C. Willis, "A comparison of exact and quasi-static methods for evaluating grounding systems at high frequencies," IEEE Transactions on Power Delivery, Vol. 11, No. 3, 1071-1081, Jul. 1996.

24. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems, part I: The vertical grounding electrode," Progress In Electromagnetics Research,, Vol. 64, 149-166, 2006.
doi:10.2528/PIER06062101

25. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems, part II: The horizontal grounding electrode," Progress In Electromagnetics Research, Vol. 64, 167-189, 2006.
doi:10.2528/PIER06062102

26. Andolfato, R., L. Bernardi, and L. Fellin, "Aerial and grounding system analysis by the shifting complex images method," IEEE Transactions on Power Delivery, Vol. 15, No. 3, 1001-1010, Jul. 2000.
doi:10.1109/61.871366

27. Dawalibi, F., "Electromagnetic fields generated by overhead and buried short conductors, part II-ground networks," IEEE Transactions on Power Delivery, Vol. 1, No. 4, 112-119, Oct. 1986.
doi:10.1109/TPWRD.1986.4308037

28. Dawalibi, F. and R. D. Southy, "Analysis of electrical interference from power lines to gas pipelines, Part I, computation methods," IEEE Transactions on Power Delivery, Vol. 4, No. 3, 1840-1846, 1989.
doi:10.1109/61.32680

29. Li, Z. X., W. J. Chen, J. B. Fan, and J. Y. Lu, "A novel mathematical modeling of grounding system buried in multilayer earth," IEEE Transactions on Power Delivery, Vol. 21, No. 3, 1267-1272, 2006.
doi:10.1109/TPWRD.2006.875857

30. Li, Z. X. and W. J. Chen, "Numerical simulation grounding system buried within horizontal multilayer earth in frequency domain," Communications in Numerical Methods in Engineering, Vol. 23, No. 1, 11-27, 2007.
doi:10.1002/cnm.878

31. Li, Z. X. and J. B. Fan, "Numerical calculation of grounding system in low frequency domain based on the boundary element method," International Journal for Numerical Methods in Engineering, Vol. 73, 685-705, 2008.
doi:10.1002/nme.2097

32. Li, Z. X., G. F. Li, J. B. Fan, and C. X. Zhang, "Numerical calculation of grounding system buried in vertical earth model in low frequency domain based on the boundary element method," European Transactions on Electrical Power, Vol. 19, No. 8, 1177-1190, 2009.
doi:10.1002/etep.293

33. Otero, A. F., J. Cidras, and J. L. Alamo, "Frequency-dependent grounding system calculation by means of a conventional nodal analysis technology," IEEE Transactions on Power Delivery, Vol. 14, No. 3, 873-877, Jul. 1999.
doi:10.1109/61.772327

34. Li, Z. X., G. F. Li, J. B. Fan, and Y. Yin, "A novel mathematical model for the lightning response of a grounding system buried in multilayered earth based on the quasi-static complex image method," European Transactions on Electrical Power, Vol. 32, No. 1, 21-30, 2012.

35. Choma, J., Electrical Networks --- Theory and Analysis, New York, 1985.

36. Stojkovic, Z., J. M. Nahman, D. Salamon, and B. Bukorovic, "Sensitivity analysis of experimentally determined grounding grid impulse characteristic," IEEE Transactions on Power Delivery, Vol. 13, No. 4, 1136-1143, Oct. 1998.
doi:10.1109/61.714473