1. Attia, H., O. Siddiqui, L. Yousefi, and O. M. Ramahi, "Metamaterial for gain enhancement of printed antennas: Theory, measurements and optimization," Saudi International Electronics, Communications and Photonics Conference (SIECPC), 1-6, Apr. 2011.
2. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902-1-213902-4, 2002.
3. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
4. Zhou, L., H. Li, Y. Qin, Z. Wei, and C. T. Chan, "Directive emissions from subwavelength metamaterial-based cavities," Antenna Technology: Small Antennas and Novel Metamaterials, Vol. 86, 101101-1-101101-3, 2005.
5. Sievenpiper, D., R. Broas, and E. Yablonovitch, "Antennas on high-impedance ground planes," IEEE MTT-S Int. Microwave Symp. Digest, Vol. 3, 1245-1248, 1999.
6. Ge, Y., K. P. Esselle, and Y. Hao, "Design of low-profile high-gain EBG resonator antennas using a genetic algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 480-483, 2007.
7. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, 2005.
8. Boubakri, A. and J. Bel Hadj Tahar, "Steerable and compact antenna using a cavity-based metamaterial," IEEE Mediterranean Microwave Symposium (MMS), 233-235, Nov. 2011.
9. Han, K., J. Fu, Q. Wu, and J. Hua, "The design and simulation of a metamaterial and subwavelength cavity-based antenna," Cross Strait Quad-regional Radio Science and Wireless Technology Conference (CSQRWC), Vol. 1, 545-548, Jul. 2011.
10. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "Low-profile resonant cavity antenna with Artificial magnetic conductor ground plane," Antennas and Propagation Society International Symposium, Vol. 4, 335-338, 2005.
11. Sohn, J. R., K. Y. Kim, H. S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research,, Vol. 61, 27-37, 2006.
12. Abbasi, N. A. and R. J. Langley, "Multiband-integrated antenna/artificial magnetic conductor," IET Microwaves, Antennas and Propagation, Vol. 5, No. 6, 711-717, 2011.
13. Dewan, R., S. K. B. A. Rahim, S. F. Ausordin, and T. Purnamirza, "The improvement of array antenna performance with the implementation of an artificial magnetic conductor (AMC) ground plane and in-phase superstrate," Progress In Electromagnetics Research, Vol. 140, 147-167, 2013.
14. Kelly, J. R., T. Kokkinos, and A. P. Feresidis, "Analysis and design of sub-wavelength resonant cavity type 2-D leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2817-2825, Sep. 2008.
15. Zhao, G., Y. C. Jiao, F. Zhang, and F. S. Zhang, "Design of high-gain low-profile resonant cavity antenna using metamaterial superstrate," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1855-1858, 2010.
16. Yang, F. H. and W. Tang, "A novel low-profile high-gain antenna based on artificial magnetic conductor for LTE applications," 2012 10th IEEE International Symposium on Antennas, Propagation and EM Theory (ISAPE), 171-174, 2012.
17. Ourir, A., A. de Lustrac, and J. M. Lourtioz, "All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas," Appl. Phys. Lett., Vol. 88, 084103-1-084103-3, 2006.
18. Lima, A. C. C. and E. A. Parker, "Fabry-Perot approach to the design of double layer FSS," IEE Proceedings of Microwave, Antennas and Propagation, Vol. 143, No. 2, 157-162, Apr. 1996.